SO(3)-Irreducible Geometry in Complex Dimension Five and Ternary Generalization of Pauli Exclusion Principle

Motivated by a ternary generalization of the Pauli exclusion principle proposed by R. Kerner, we propose a notion of a <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="double-struck...

Full description

Bibliographic Details
Main Authors: Viktor Abramov, Olga Liivapuu
Format: Article
Language:English
Published: MDPI AG 2023-12-01
Series:Universe
Subjects:
Online Access:https://www.mdpi.com/2218-1997/10/1/2
_version_ 1797342458077511680
author Viktor Abramov
Olga Liivapuu
author_facet Viktor Abramov
Olga Liivapuu
author_sort Viktor Abramov
collection DOAJ
description Motivated by a ternary generalization of the Pauli exclusion principle proposed by R. Kerner, we propose a notion of a <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="double-struck">Z</mi><mn>3</mn></msub></semantics></math></inline-formula>-skew-symmetric covariant <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mi>SO</mi></mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></semantics></math></inline-formula>-tensor of the third order, consider it as a 3-dimensional matrix, and study the geometry of the 10-dimensional complex space of these tensors. We split this 10-dimensional space into a direct sum of two 5-dimensional subspaces by means of a primitive third-order root of unity <i>q</i>, and in each subspace, there is an irreducible representation of the rotation group <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mi>SO</mi></mrow><mo>(</mo><mn>3</mn><mo>)</mo><mo>↪</mo><mrow><mi>SU</mi></mrow><mo>(</mo><mn>5</mn><mo>)</mo></mrow></semantics></math></inline-formula>. We find two <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mi>SO</mi></mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></semantics></math></inline-formula>-invariants of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="double-struck">Z</mi><mn>3</mn></msub></semantics></math></inline-formula>-skew-symmetric tensors: one is the canonical Hermitian metric in five-dimensional complex vector space and the other is a quadratic form denoted by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>K</mi><mo>(</mo><mi>z</mi><mo>,</mo><mi>z</mi><mo>)</mo></mrow></semantics></math></inline-formula>. We study the invariant properties of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>K</mi><mo>(</mo><mi>z</mi><mo>,</mo><mi>z</mi><mo>)</mo></mrow></semantics></math></inline-formula> and find its stabilizer. Making use of these invariant properties, we define an <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mi>SO</mi></mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></semantics></math></inline-formula>-irreducible geometric structure on a five-dimensional complex Hermitian manifold. We study a connection on a five-dimensional complex Hermitian manifold with an <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mi>SO</mi></mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></semantics></math></inline-formula>-irreducible geometric structure and find its curvature and torsion.
first_indexed 2024-03-08T10:33:34Z
format Article
id doaj.art-917681edca1c4b0a8f41ec33db276ba8
institution Directory Open Access Journal
issn 2218-1997
language English
last_indexed 2024-03-08T10:33:34Z
publishDate 2023-12-01
publisher MDPI AG
record_format Article
series Universe
spelling doaj.art-917681edca1c4b0a8f41ec33db276ba82024-01-26T18:42:53ZengMDPI AGUniverse2218-19972023-12-01101210.3390/universe10010002SO(3)-Irreducible Geometry in Complex Dimension Five and Ternary Generalization of Pauli Exclusion PrincipleViktor Abramov0Olga Liivapuu1Institute of Mathematics and Statistics, University of Tartu, 51009 Tartu, EstoniaInstitute of Forestry and Engineering, Estonian University of Life Sciences, 51006 Tartu, EstoniaMotivated by a ternary generalization of the Pauli exclusion principle proposed by R. Kerner, we propose a notion of a <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="double-struck">Z</mi><mn>3</mn></msub></semantics></math></inline-formula>-skew-symmetric covariant <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mi>SO</mi></mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></semantics></math></inline-formula>-tensor of the third order, consider it as a 3-dimensional matrix, and study the geometry of the 10-dimensional complex space of these tensors. We split this 10-dimensional space into a direct sum of two 5-dimensional subspaces by means of a primitive third-order root of unity <i>q</i>, and in each subspace, there is an irreducible representation of the rotation group <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mi>SO</mi></mrow><mo>(</mo><mn>3</mn><mo>)</mo><mo>↪</mo><mrow><mi>SU</mi></mrow><mo>(</mo><mn>5</mn><mo>)</mo></mrow></semantics></math></inline-formula>. We find two <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mi>SO</mi></mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></semantics></math></inline-formula>-invariants of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="double-struck">Z</mi><mn>3</mn></msub></semantics></math></inline-formula>-skew-symmetric tensors: one is the canonical Hermitian metric in five-dimensional complex vector space and the other is a quadratic form denoted by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>K</mi><mo>(</mo><mi>z</mi><mo>,</mo><mi>z</mi><mo>)</mo></mrow></semantics></math></inline-formula>. We study the invariant properties of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>K</mi><mo>(</mo><mi>z</mi><mo>,</mo><mi>z</mi><mo>)</mo></mrow></semantics></math></inline-formula> and find its stabilizer. Making use of these invariant properties, we define an <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mi>SO</mi></mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></semantics></math></inline-formula>-irreducible geometric structure on a five-dimensional complex Hermitian manifold. We study a connection on a five-dimensional complex Hermitian manifold with an <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mi>SO</mi></mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></semantics></math></inline-formula>-irreducible geometric structure and find its curvature and torsion.https://www.mdpi.com/2218-1997/10/1/2tensorsrotation grouptensor irreducible representationscomplex manifoldsspecial geometriesconnection
spellingShingle Viktor Abramov
Olga Liivapuu
SO(3)-Irreducible Geometry in Complex Dimension Five and Ternary Generalization of Pauli Exclusion Principle
Universe
tensors
rotation group
tensor irreducible representations
complex manifolds
special geometries
connection
title SO(3)-Irreducible Geometry in Complex Dimension Five and Ternary Generalization of Pauli Exclusion Principle
title_full SO(3)-Irreducible Geometry in Complex Dimension Five and Ternary Generalization of Pauli Exclusion Principle
title_fullStr SO(3)-Irreducible Geometry in Complex Dimension Five and Ternary Generalization of Pauli Exclusion Principle
title_full_unstemmed SO(3)-Irreducible Geometry in Complex Dimension Five and Ternary Generalization of Pauli Exclusion Principle
title_short SO(3)-Irreducible Geometry in Complex Dimension Five and Ternary Generalization of Pauli Exclusion Principle
title_sort so 3 irreducible geometry in complex dimension five and ternary generalization of pauli exclusion principle
topic tensors
rotation group
tensor irreducible representations
complex manifolds
special geometries
connection
url https://www.mdpi.com/2218-1997/10/1/2
work_keys_str_mv AT viktorabramov so3irreduciblegeometryincomplexdimensionfiveandternarygeneralizationofpauliexclusionprinciple
AT olgaliivapuu so3irreduciblegeometryincomplexdimensionfiveandternarygeneralizationofpauliexclusionprinciple