A Simple Calibration Method to Consider Plastic Deformation Influence on X-ray Elastic Constant Based on Peak Width Variation

The <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mrow><mi mathvariant="normal">sin</mi><mo>²</mo></mrow><mo>⁡</mo><mrow><m...

Full description

Bibliographic Details
Main Authors: Ewann Gautier, Pierre Faucheux, Bruno Levieil, Laurent Barrallier, Sylvain Calloch, Cédric Doudard
Format: Article
Language:English
Published: MDPI AG 2024-01-01
Series:Metals
Subjects:
Online Access:https://www.mdpi.com/2075-4701/14/1/62
_version_ 1827371508427653120
author Ewann Gautier
Pierre Faucheux
Bruno Levieil
Laurent Barrallier
Sylvain Calloch
Cédric Doudard
author_facet Ewann Gautier
Pierre Faucheux
Bruno Levieil
Laurent Barrallier
Sylvain Calloch
Cédric Doudard
author_sort Ewann Gautier
collection DOAJ
description The <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mrow><mi mathvariant="normal">sin</mi><mo>²</mo></mrow><mo>⁡</mo><mrow><mi>ψ</mi></mrow></mrow></mrow></semantics></math></inline-formula> method is the general method for analyzing X-ray diffraction stress measurements. This method relies on the estimation of a parameter known as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><msubsup><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow><mrow><mi>h</mi><mi>k</mi><mi>l</mi></mrow></msubsup></mrow></semantics></math></inline-formula>, which is generally considered as a material constant. However, various studies have shown that this parameter can be affected by plastic deformation leading to proportional uncertainties in the estimation of stresses. In this paper, in situ X-ray diffraction measurements are performed during a tensile test with unloads on a low-carbon high-strength steel. The calibrated <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><msubsup><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow><mrow><mi>h</mi><mi>k</mi><mi>l</mi></mrow></msubsup></mrow></semantics></math></inline-formula> parameter varies from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>3.5</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>6</mn></mrow></msup></mrow></semantics></math></inline-formula> MPa<sup>−1</sup> to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>5.5</mn><mo> </mo><msup><mrow><mo>×</mo><mn>10</mn></mrow><mrow><mo>−</mo><mn>6</mn></mrow></msup></mrow></semantics></math></inline-formula> Mpa<sup>−1</sup>, depending on the surface condition and on the plastic strain state, leading to a maximum error on the stress level of 40% compared to reference handbook values. The results also show that plastic strain is responsible for 6 to 14% of the variation, depending on the initial surface sample condition. A method is then proposed to correct this variation based on the fit of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><msubsup><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow><mrow><mi>h</mi><mi>k</mi><mi>l</mi></mrow></msubsup></mrow></semantics></math></inline-formula> evolution with respect to the peak diffraction width, the latter being an indication of the plasticity state. It is shown that the proposed methodology improves the applied stress increment prediction, although the absolute stress value still depends on pseudo-macrostresses that also vary with plastic strain.
first_indexed 2024-03-08T10:40:32Z
format Article
id doaj.art-91871d2efdbb4226a04561607f42de8b
institution Directory Open Access Journal
issn 2075-4701
language English
last_indexed 2024-03-08T10:40:32Z
publishDate 2024-01-01
publisher MDPI AG
record_format Article
series Metals
spelling doaj.art-91871d2efdbb4226a04561607f42de8b2024-01-26T17:41:04ZengMDPI AGMetals2075-47012024-01-011416210.3390/met14010062A Simple Calibration Method to Consider Plastic Deformation Influence on X-ray Elastic Constant Based on Peak Width VariationEwann Gautier0Pierre Faucheux1Bruno Levieil2Laurent Barrallier3Sylvain Calloch4Cédric Doudard5ENSTA Bretagne, IRDL—UMR CNRS 6027, 2 Rue François Verny, 29200 Brest, FranceENSTA Bretagne, IRDL—UMR CNRS 6027, 2 Rue François Verny, 29200 Brest, FranceENSTA Bretagne, IRDL—UMR CNRS 6027, 2 Rue François Verny, 29200 Brest, FranceMSMP Arts et Métiers Institute of Technology, HESAM Université, F-13617 Aix-en-Provence, FranceENSTA Bretagne, IRDL—UMR CNRS 6027, 2 Rue François Verny, 29200 Brest, FranceENSTA Bretagne, IRDL—UMR CNRS 6027, 2 Rue François Verny, 29200 Brest, FranceThe <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mrow><mi mathvariant="normal">sin</mi><mo>²</mo></mrow><mo>⁡</mo><mrow><mi>ψ</mi></mrow></mrow></mrow></semantics></math></inline-formula> method is the general method for analyzing X-ray diffraction stress measurements. This method relies on the estimation of a parameter known as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><msubsup><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow><mrow><mi>h</mi><mi>k</mi><mi>l</mi></mrow></msubsup></mrow></semantics></math></inline-formula>, which is generally considered as a material constant. However, various studies have shown that this parameter can be affected by plastic deformation leading to proportional uncertainties in the estimation of stresses. In this paper, in situ X-ray diffraction measurements are performed during a tensile test with unloads on a low-carbon high-strength steel. The calibrated <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><msubsup><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow><mrow><mi>h</mi><mi>k</mi><mi>l</mi></mrow></msubsup></mrow></semantics></math></inline-formula> parameter varies from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>3.5</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>6</mn></mrow></msup></mrow></semantics></math></inline-formula> MPa<sup>−1</sup> to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>5.5</mn><mo> </mo><msup><mrow><mo>×</mo><mn>10</mn></mrow><mrow><mo>−</mo><mn>6</mn></mrow></msup></mrow></semantics></math></inline-formula> Mpa<sup>−1</sup>, depending on the surface condition and on the plastic strain state, leading to a maximum error on the stress level of 40% compared to reference handbook values. The results also show that plastic strain is responsible for 6 to 14% of the variation, depending on the initial surface sample condition. A method is then proposed to correct this variation based on the fit of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><msubsup><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow><mrow><mi>h</mi><mi>k</mi><mi>l</mi></mrow></msubsup></mrow></semantics></math></inline-formula> evolution with respect to the peak diffraction width, the latter being an indication of the plasticity state. It is shown that the proposed methodology improves the applied stress increment prediction, although the absolute stress value still depends on pseudo-macrostresses that also vary with plastic strain.https://www.mdpi.com/2075-4701/14/1/62X-ray elastic constantsplastic strainpseudo-macrostress
spellingShingle Ewann Gautier
Pierre Faucheux
Bruno Levieil
Laurent Barrallier
Sylvain Calloch
Cédric Doudard
A Simple Calibration Method to Consider Plastic Deformation Influence on X-ray Elastic Constant Based on Peak Width Variation
Metals
X-ray elastic constants
plastic strain
pseudo-macrostress
title A Simple Calibration Method to Consider Plastic Deformation Influence on X-ray Elastic Constant Based on Peak Width Variation
title_full A Simple Calibration Method to Consider Plastic Deformation Influence on X-ray Elastic Constant Based on Peak Width Variation
title_fullStr A Simple Calibration Method to Consider Plastic Deformation Influence on X-ray Elastic Constant Based on Peak Width Variation
title_full_unstemmed A Simple Calibration Method to Consider Plastic Deformation Influence on X-ray Elastic Constant Based on Peak Width Variation
title_short A Simple Calibration Method to Consider Plastic Deformation Influence on X-ray Elastic Constant Based on Peak Width Variation
title_sort simple calibration method to consider plastic deformation influence on x ray elastic constant based on peak width variation
topic X-ray elastic constants
plastic strain
pseudo-macrostress
url https://www.mdpi.com/2075-4701/14/1/62
work_keys_str_mv AT ewanngautier asimplecalibrationmethodtoconsiderplasticdeformationinfluenceonxrayelasticconstantbasedonpeakwidthvariation
AT pierrefaucheux asimplecalibrationmethodtoconsiderplasticdeformationinfluenceonxrayelasticconstantbasedonpeakwidthvariation
AT brunolevieil asimplecalibrationmethodtoconsiderplasticdeformationinfluenceonxrayelasticconstantbasedonpeakwidthvariation
AT laurentbarrallier asimplecalibrationmethodtoconsiderplasticdeformationinfluenceonxrayelasticconstantbasedonpeakwidthvariation
AT sylvaincalloch asimplecalibrationmethodtoconsiderplasticdeformationinfluenceonxrayelasticconstantbasedonpeakwidthvariation
AT cedricdoudard asimplecalibrationmethodtoconsiderplasticdeformationinfluenceonxrayelasticconstantbasedonpeakwidthvariation
AT ewanngautier simplecalibrationmethodtoconsiderplasticdeformationinfluenceonxrayelasticconstantbasedonpeakwidthvariation
AT pierrefaucheux simplecalibrationmethodtoconsiderplasticdeformationinfluenceonxrayelasticconstantbasedonpeakwidthvariation
AT brunolevieil simplecalibrationmethodtoconsiderplasticdeformationinfluenceonxrayelasticconstantbasedonpeakwidthvariation
AT laurentbarrallier simplecalibrationmethodtoconsiderplasticdeformationinfluenceonxrayelasticconstantbasedonpeakwidthvariation
AT sylvaincalloch simplecalibrationmethodtoconsiderplasticdeformationinfluenceonxrayelasticconstantbasedonpeakwidthvariation
AT cedricdoudard simplecalibrationmethodtoconsiderplasticdeformationinfluenceonxrayelasticconstantbasedonpeakwidthvariation