Existence of positive solutions of elliptic equations with Hardy term

This paper is devoted to studying the existence of positive solutions of the problem: \begin{equation} \begin{cases}\label{0.1}\tag{$\ast$} -\Delta u=\frac{u^{p}}{|x|^{a}}+h(x,u,\nabla u), & \mbox{in} \ \Omega,\\ u=0, & \mbox{on}\ \partial\Omega,\\ \end{cases} \end{equation} where $\Omega\s...

Full description

Bibliographic Details
Main Authors: Huimin Yan, Junhui Xie
Format: Article
Language:English
Published: University of Szeged 2024-01-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Subjects:
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=10449
_version_ 1797352371338084352
author Huimin Yan
Junhui Xie
author_facet Huimin Yan
Junhui Xie
author_sort Huimin Yan
collection DOAJ
description This paper is devoted to studying the existence of positive solutions of the problem: \begin{equation} \begin{cases}\label{0.1}\tag{$\ast$} -\Delta u=\frac{u^{p}}{|x|^{a}}+h(x,u,\nabla u), & \mbox{in} \ \Omega,\\ u=0, & \mbox{on}\ \partial\Omega,\\ \end{cases} \end{equation} where $\Omega\subset \mathbb{R}^{N}(N\geq3)$ is an open bounded smooth domain with boundary $\partial\Omega$, and $1<p<\frac{N-a}{N-2}$, $0<a<2$. Under suitable conditions of $h(x,u,\nabla u)$, we get a priori estimates for the positive solutions of problem \eqref{0.1}. By making use of these estimates and topological degree theory, we further obtain some existence results for the positive solutions of problem \eqref{0.1} when $1<p<\frac{N-a}{N-2}$.
first_indexed 2024-03-08T13:15:29Z
format Article
id doaj.art-9195a07641fc4827a06634f2ce63a2f7
institution Directory Open Access Journal
issn 1417-3875
language English
last_indexed 2024-03-08T13:15:29Z
publishDate 2024-01-01
publisher University of Szeged
record_format Article
series Electronic Journal of Qualitative Theory of Differential Equations
spelling doaj.art-9195a07641fc4827a06634f2ce63a2f72024-01-18T08:29:34ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38752024-01-012024111410.14232/ejqtde.2024.1.110449Existence of positive solutions of elliptic equations with Hardy termHuimin Yan0Junhui Xie1School of Mathematics and Statistics, Hubei Minzu University, Enshi City, ChinaSchool of Mathematics and Statistics, Hubei Minzu University, Enshi City, ChinaThis paper is devoted to studying the existence of positive solutions of the problem: \begin{equation} \begin{cases}\label{0.1}\tag{$\ast$} -\Delta u=\frac{u^{p}}{|x|^{a}}+h(x,u,\nabla u), & \mbox{in} \ \Omega,\\ u=0, & \mbox{on}\ \partial\Omega,\\ \end{cases} \end{equation} where $\Omega\subset \mathbb{R}^{N}(N\geq3)$ is an open bounded smooth domain with boundary $\partial\Omega$, and $1<p<\frac{N-a}{N-2}$, $0<a<2$. Under suitable conditions of $h(x,u,\nabla u)$, we get a priori estimates for the positive solutions of problem \eqref{0.1}. By making use of these estimates and topological degree theory, we further obtain some existence results for the positive solutions of problem \eqref{0.1} when $1<p<\frac{N-a}{N-2}$.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=10449a priori estimateshardy termpositive solutions
spellingShingle Huimin Yan
Junhui Xie
Existence of positive solutions of elliptic equations with Hardy term
Electronic Journal of Qualitative Theory of Differential Equations
a priori estimates
hardy term
positive solutions
title Existence of positive solutions of elliptic equations with Hardy term
title_full Existence of positive solutions of elliptic equations with Hardy term
title_fullStr Existence of positive solutions of elliptic equations with Hardy term
title_full_unstemmed Existence of positive solutions of elliptic equations with Hardy term
title_short Existence of positive solutions of elliptic equations with Hardy term
title_sort existence of positive solutions of elliptic equations with hardy term
topic a priori estimates
hardy term
positive solutions
url http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=10449
work_keys_str_mv AT huiminyan existenceofpositivesolutionsofellipticequationswithhardyterm
AT junhuixie existenceofpositivesolutionsofellipticequationswithhardyterm