Assessing the impact of technological change on similar occupations: Implications for employment alternatives.
<h4>Background</h4>The fast-changing labor market highlights the need for an in-depth understanding of occupational mobility impacted by technological change. However, we lack a multidimensional classification scheme that considers similarities of occupations comprehensively, which preve...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2023-01-01
|
Series: | PLoS ONE |
Online Access: | https://doi.org/10.1371/journal.pone.0291428 |
_version_ | 1827812120882839552 |
---|---|
author | Karine Torosyan Sicheng Wang Elizabeth A Mack Jenna A Van Fossen Nathan Baker |
author_facet | Karine Torosyan Sicheng Wang Elizabeth A Mack Jenna A Van Fossen Nathan Baker |
author_sort | Karine Torosyan |
collection | DOAJ |
description | <h4>Background</h4>The fast-changing labor market highlights the need for an in-depth understanding of occupational mobility impacted by technological change. However, we lack a multidimensional classification scheme that considers similarities of occupations comprehensively, which prevents us from predicting employment trends and mobility across occupations. This study fills the gap by examining employment trends based on similarities between occupations.<h4>Method</h4>We first demonstrated a new method that clusters 756 occupation titles based on knowledge, skills, abilities, education, experience, training, activities, values, and interests. We used the Principal Component Analysis to categorize occupations in the Standard Occupational Classification, which is grouped into a four-level hierarchy. Then, we paired the occupation clusters with the occupational employment projections provided by the U.S. Bureau of Labor Statistics. We analyzed how employment would change and what factors affect the employment changes within occupation groups. Particularly, we specified factors related to technological changes.<h4>Results</h4>The results reveal that technological change accounts for significant job losses in some clusters. This poses occupational mobility challenges for workers in these jobs at present. Job losses for nearly 60% of current employment will occur in low-skill, low-wage occupational groups. Meanwhile, many mid-skilled and highly skilled jobs are projected to grow in the next ten years.<h4>Conclusion</h4>Our results demonstrate the utility of our occupational classification scheme. Furthermore, it suggests a critical need for skills upgrading and workforce development for workers in declining jobs. Special attention should be paid to vulnerable workers, such as older individuals and minorities. |
first_indexed | 2024-03-11T23:13:37Z |
format | Article |
id | doaj.art-919c0e36e21f44bdb0a0ccf413555f24 |
institution | Directory Open Access Journal |
issn | 1932-6203 |
language | English |
last_indexed | 2024-03-11T23:13:37Z |
publishDate | 2023-01-01 |
publisher | Public Library of Science (PLoS) |
record_format | Article |
series | PLoS ONE |
spelling | doaj.art-919c0e36e21f44bdb0a0ccf413555f242023-09-21T05:32:17ZengPublic Library of Science (PLoS)PLoS ONE1932-62032023-01-01189e029142810.1371/journal.pone.0291428Assessing the impact of technological change on similar occupations: Implications for employment alternatives.Karine TorosyanSicheng WangElizabeth A MackJenna A Van FossenNathan Baker<h4>Background</h4>The fast-changing labor market highlights the need for an in-depth understanding of occupational mobility impacted by technological change. However, we lack a multidimensional classification scheme that considers similarities of occupations comprehensively, which prevents us from predicting employment trends and mobility across occupations. This study fills the gap by examining employment trends based on similarities between occupations.<h4>Method</h4>We first demonstrated a new method that clusters 756 occupation titles based on knowledge, skills, abilities, education, experience, training, activities, values, and interests. We used the Principal Component Analysis to categorize occupations in the Standard Occupational Classification, which is grouped into a four-level hierarchy. Then, we paired the occupation clusters with the occupational employment projections provided by the U.S. Bureau of Labor Statistics. We analyzed how employment would change and what factors affect the employment changes within occupation groups. Particularly, we specified factors related to technological changes.<h4>Results</h4>The results reveal that technological change accounts for significant job losses in some clusters. This poses occupational mobility challenges for workers in these jobs at present. Job losses for nearly 60% of current employment will occur in low-skill, low-wage occupational groups. Meanwhile, many mid-skilled and highly skilled jobs are projected to grow in the next ten years.<h4>Conclusion</h4>Our results demonstrate the utility of our occupational classification scheme. Furthermore, it suggests a critical need for skills upgrading and workforce development for workers in declining jobs. Special attention should be paid to vulnerable workers, such as older individuals and minorities.https://doi.org/10.1371/journal.pone.0291428 |
spellingShingle | Karine Torosyan Sicheng Wang Elizabeth A Mack Jenna A Van Fossen Nathan Baker Assessing the impact of technological change on similar occupations: Implications for employment alternatives. PLoS ONE |
title | Assessing the impact of technological change on similar occupations: Implications for employment alternatives. |
title_full | Assessing the impact of technological change on similar occupations: Implications for employment alternatives. |
title_fullStr | Assessing the impact of technological change on similar occupations: Implications for employment alternatives. |
title_full_unstemmed | Assessing the impact of technological change on similar occupations: Implications for employment alternatives. |
title_short | Assessing the impact of technological change on similar occupations: Implications for employment alternatives. |
title_sort | assessing the impact of technological change on similar occupations implications for employment alternatives |
url | https://doi.org/10.1371/journal.pone.0291428 |
work_keys_str_mv | AT karinetorosyan assessingtheimpactoftechnologicalchangeonsimilaroccupationsimplicationsforemploymentalternatives AT sichengwang assessingtheimpactoftechnologicalchangeonsimilaroccupationsimplicationsforemploymentalternatives AT elizabethamack assessingtheimpactoftechnologicalchangeonsimilaroccupationsimplicationsforemploymentalternatives AT jennaavanfossen assessingtheimpactoftechnologicalchangeonsimilaroccupationsimplicationsforemploymentalternatives AT nathanbaker assessingtheimpactoftechnologicalchangeonsimilaroccupationsimplicationsforemploymentalternatives |