In Vivo Evaluation of AT-101 (R-(—)-Gossypol Acetic Acid) in Androgen-Independent Growth of VCaP Prostate Cancer Cells in Combination with Surgical Castration

PURPOSE: Upregulation of Bcl-2 family members is a well-established mechanism in the development of androgen-independent prostate cancer. Inhibition of the antiapoptotic proteins Bcl-2 and Mcl-1 may delay the transition to androgen-independent growth. EXPERIMENTAL DESIGN: We have established a prost...

Full description

Bibliographic Details
Main Authors: Robert D. Loberg, Natalie McGregor, Chi Ying, Erin Sargent, Kenneth J. Pienta
Format: Article
Language:English
Published: Elsevier 2007-12-01
Series:Neoplasia: An International Journal for Oncology Research
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S1476558607801138
Description
Summary:PURPOSE: Upregulation of Bcl-2 family members is a well-established mechanism in the development of androgen-independent prostate cancer. Inhibition of the antiapoptotic proteins Bcl-2 and Mcl-1 may delay the transition to androgen-independent growth. EXPERIMENTAL DESIGN: We have established a prostate cancer model with VCaP prostate cancer cells in vivo to study the transition to androgen independence. Here, we investigated the efficacy of AT-101 (R-(—)-gossypol acetic acid; a pan small molecule inhibitor of Bcl-2, BCI-xL, Mcl-1) in combination with surgical castration to delay the onset of androgen-independent growth in vivo. RESULTS: AT-101 (15 mg/kg, per os (p.o.) 5 days/week) in combination with surgical castration delayed the onset of androgen-independent prostate cancer growth in vivo. In addition, we demonstrate the induction of caspase-9- and caspase-3-dependent induction of apoptosis following AT-101 treatment in vitro which was accompanied by an AT-101-induced downregulation of Bcl-2 and Mcl-1 mRNA and protein expression. CONCLUSIONS: We conclude that AT-101 in combination with surgical castration delays the onset of androgen-independent prostate cancer in vivo by disrupting the antiapoptotic activity of BCl-2 upregulation during the transition to androgen independence. Further studies are needed to define the mechanism of action by which AT-101 attenuates the expression of Bcl-2 and Mcl-1 and to characterize the potential for AT-101 in combination with hormone therapy.
ISSN:1476-5586
1522-8002