Incorporating Clinical Imaging into the Delivery of Microbeam Radiation Therapy

Synchrotron microbeam radiation therapy is a promising pre-clinical radiation treatment modality; however, it comes with many technical challenges. This study describes the image guidance protocol used for Australia’s first long-term pre-clinical MRT treatment of rats bearing 9L gliosarcoma tumours....

Full description

Bibliographic Details
Main Authors: Jason Paino, Micah Barnes, Elette Engels, Jeremy Davis, Susanna Guatelli, Michael de Veer, Chris Hall, Daniel Häusermann, Moeava Tehei, Stéphanie Corde, Anatoly Rosenfeld, Michael Lerch
Format: Article
Language:English
Published: MDPI AG 2021-09-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/11/19/9101
_version_ 1797516796276768768
author Jason Paino
Micah Barnes
Elette Engels
Jeremy Davis
Susanna Guatelli
Michael de Veer
Chris Hall
Daniel Häusermann
Moeava Tehei
Stéphanie Corde
Anatoly Rosenfeld
Michael Lerch
author_facet Jason Paino
Micah Barnes
Elette Engels
Jeremy Davis
Susanna Guatelli
Michael de Veer
Chris Hall
Daniel Häusermann
Moeava Tehei
Stéphanie Corde
Anatoly Rosenfeld
Michael Lerch
author_sort Jason Paino
collection DOAJ
description Synchrotron microbeam radiation therapy is a promising pre-clinical radiation treatment modality; however, it comes with many technical challenges. This study describes the image guidance protocol used for Australia’s first long-term pre-clinical MRT treatment of rats bearing 9L gliosarcoma tumours. The protocol utilises existing infrastructure available at the Australian Synchrotron and the adjoining Monash Biomedical Imaging facility. The protocol is designed and optimised to treat small animals utilising high-resolution clinical CT for patient specific tumour identification, coupled with conventional radiography, using the recently developed <span style="font-variant: small-caps;">SyncMRT</span> program for image guidance. Dosimetry performed in small animal phantoms shows patient dose is comparable to standard clinical doses, with a CT associated dose of less than <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1.39</mn></mrow></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">c</mi></semantics></math></inline-formula>Gy and a planar radiograh dose of less than <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0.03</mn></mrow></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">c</mi></semantics></math></inline-formula>Gy. Experimental validation of alignment accuracy with radiographic film demonstrates end to end accuracy of less than <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>±</mo><mn>0.34</mn></mrow></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">m</mi></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">m</mi></semantics></math></inline-formula> in anatomical phantoms. Histological analysis of tumour-bearing rats treated with microbeam radiation therapy verifies that tumours are targeted well within applied treatment margins. To date, this technique has been used to treat 35 tumour-bearing rats.
first_indexed 2024-03-10T07:06:53Z
format Article
id doaj.art-91b19c9127764f19b4b4d2aa5678841f
institution Directory Open Access Journal
issn 2076-3417
language English
last_indexed 2024-03-10T07:06:53Z
publishDate 2021-09-01
publisher MDPI AG
record_format Article
series Applied Sciences
spelling doaj.art-91b19c9127764f19b4b4d2aa5678841f2023-11-22T15:47:46ZengMDPI AGApplied Sciences2076-34172021-09-011119910110.3390/app11199101Incorporating Clinical Imaging into the Delivery of Microbeam Radiation TherapyJason Paino0Micah Barnes1Elette Engels2Jeremy Davis3Susanna Guatelli4Michael de Veer5Chris Hall6Daniel Häusermann7Moeava Tehei8Stéphanie Corde9Anatoly Rosenfeld10Michael Lerch11Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522, AustraliaCentre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522, AustraliaCentre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522, AustraliaCentre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522, AustraliaCentre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522, AustraliaMonash Biomedical Imaging, Monash University, Melbourne, VIC 3168, AustraliaImaging and Medical Beamline, Australian Nuclear Science and Technology Organisation—Australian Synchrotron, Kulin Nation, Clayton, VIC 3168, AustraliaImaging and Medical Beamline, Australian Nuclear Science and Technology Organisation—Australian Synchrotron, Kulin Nation, Clayton, VIC 3168, AustraliaCentre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522, AustraliaCentre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522, AustraliaCentre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522, AustraliaCentre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522, AustraliaSynchrotron microbeam radiation therapy is a promising pre-clinical radiation treatment modality; however, it comes with many technical challenges. This study describes the image guidance protocol used for Australia’s first long-term pre-clinical MRT treatment of rats bearing 9L gliosarcoma tumours. The protocol utilises existing infrastructure available at the Australian Synchrotron and the adjoining Monash Biomedical Imaging facility. The protocol is designed and optimised to treat small animals utilising high-resolution clinical CT for patient specific tumour identification, coupled with conventional radiography, using the recently developed <span style="font-variant: small-caps;">SyncMRT</span> program for image guidance. Dosimetry performed in small animal phantoms shows patient dose is comparable to standard clinical doses, with a CT associated dose of less than <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1.39</mn></mrow></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">c</mi></semantics></math></inline-formula>Gy and a planar radiograh dose of less than <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0.03</mn></mrow></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">c</mi></semantics></math></inline-formula>Gy. Experimental validation of alignment accuracy with radiographic film demonstrates end to end accuracy of less than <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>±</mo><mn>0.34</mn></mrow></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">m</mi></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">m</mi></semantics></math></inline-formula> in anatomical phantoms. Histological analysis of tumour-bearing rats treated with microbeam radiation therapy verifies that tumours are targeted well within applied treatment margins. To date, this technique has been used to treat 35 tumour-bearing rats.https://www.mdpi.com/2076-3417/11/19/9101image guidancemicrobeam radiation therapyradiotherapyprotocoldosimetryin vivo
spellingShingle Jason Paino
Micah Barnes
Elette Engels
Jeremy Davis
Susanna Guatelli
Michael de Veer
Chris Hall
Daniel Häusermann
Moeava Tehei
Stéphanie Corde
Anatoly Rosenfeld
Michael Lerch
Incorporating Clinical Imaging into the Delivery of Microbeam Radiation Therapy
Applied Sciences
image guidance
microbeam radiation therapy
radiotherapy
protocol
dosimetry
in vivo
title Incorporating Clinical Imaging into the Delivery of Microbeam Radiation Therapy
title_full Incorporating Clinical Imaging into the Delivery of Microbeam Radiation Therapy
title_fullStr Incorporating Clinical Imaging into the Delivery of Microbeam Radiation Therapy
title_full_unstemmed Incorporating Clinical Imaging into the Delivery of Microbeam Radiation Therapy
title_short Incorporating Clinical Imaging into the Delivery of Microbeam Radiation Therapy
title_sort incorporating clinical imaging into the delivery of microbeam radiation therapy
topic image guidance
microbeam radiation therapy
radiotherapy
protocol
dosimetry
in vivo
url https://www.mdpi.com/2076-3417/11/19/9101
work_keys_str_mv AT jasonpaino incorporatingclinicalimagingintothedeliveryofmicrobeamradiationtherapy
AT micahbarnes incorporatingclinicalimagingintothedeliveryofmicrobeamradiationtherapy
AT eletteengels incorporatingclinicalimagingintothedeliveryofmicrobeamradiationtherapy
AT jeremydavis incorporatingclinicalimagingintothedeliveryofmicrobeamradiationtherapy
AT susannaguatelli incorporatingclinicalimagingintothedeliveryofmicrobeamradiationtherapy
AT michaeldeveer incorporatingclinicalimagingintothedeliveryofmicrobeamradiationtherapy
AT chrishall incorporatingclinicalimagingintothedeliveryofmicrobeamradiationtherapy
AT danielhausermann incorporatingclinicalimagingintothedeliveryofmicrobeamradiationtherapy
AT moeavatehei incorporatingclinicalimagingintothedeliveryofmicrobeamradiationtherapy
AT stephaniecorde incorporatingclinicalimagingintothedeliveryofmicrobeamradiationtherapy
AT anatolyrosenfeld incorporatingclinicalimagingintothedeliveryofmicrobeamradiationtherapy
AT michaellerch incorporatingclinicalimagingintothedeliveryofmicrobeamradiationtherapy