Analytical Solution for Wave Scattering by a Surface Obstacle above a Muddy Seabed

We present an analytical solution for the scattering of linear progressive waves by a surface rectangular obstacle above a muddy seabed. The bottom cohesive mud is assumed to act as a Newtonian fluid, and the thickness of the mud layer is considered to be comparable to the Stokes boundary layer thic...

Full description

Bibliographic Details
Main Author: I-Chi Chan
Format: Article
Language:English
Published: MDPI AG 2022-08-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/10/16/2838
Description
Summary:We present an analytical solution for the scattering of linear progressive waves by a surface rectangular obstacle above a muddy seabed. The bottom cohesive mud is assumed to act as a Newtonian fluid, and the thickness of the mud layer is considered to be comparable to the Stokes boundary layer thickness. Our analytical results based on the matched eigenfunction expansions incorporate the combined effects of obstacles and a fluid mud bottom. By reducing the mud layer thickness or the dimensions of the obstacle to zero, the present study recovers the classical solution for wave scattering by a surface obstacle above a solid bed or wave propagation over a layer of fluid mud. Our analytical predictions of wave amplitudes and wave forces acting on the bottom of the obstacle agree satisfactorily with the available numerical results. The most prominent effect of a muddy seabed is a strong damping of wave amplitude. Parameter study reveals that the obstacle submerged depth, mud layer thickness, and wave frequency can have significant impacts on the attenuation of wave amplitude due to the presence of a muddy seabed.
ISSN:2227-7390