Greenhouse Gas Emissions as Influenced by Nitrogen Fertilization and Harvest Residue Management in Sugarcane Production

Core Ideas Application of urea led to higher N2O emissions than urea–ammonium nitrate in sugarcane. Residue retention led to higher N2O and CH4 emissions irrespective of N source. Both N source and residue management did not affect CO2 emissions. Sugarcane (Saccharum spp.) is a major row‐crop in the...

Full description

Bibliographic Details
Main Authors: Sanku Dattamudi, Jim Jian Wang, Syam K. Dodla, H. P. Viator, Ron DeLaune, April Hiscox, Murali Darapuneni, Changyoon Jeong, Patrick Colyer
Format: Article
Language:English
Published: Wiley 2019-01-01
Series:Agrosystems, Geosciences & Environment
Online Access:https://doi.org/10.2134/age2019.03.0014
_version_ 1811235364004691968
author Sanku Dattamudi
Jim Jian Wang
Syam K. Dodla
H. P. Viator
Ron DeLaune
April Hiscox
Murali Darapuneni
Changyoon Jeong
Patrick Colyer
author_facet Sanku Dattamudi
Jim Jian Wang
Syam K. Dodla
H. P. Viator
Ron DeLaune
April Hiscox
Murali Darapuneni
Changyoon Jeong
Patrick Colyer
author_sort Sanku Dattamudi
collection DOAJ
description Core Ideas Application of urea led to higher N2O emissions than urea–ammonium nitrate in sugarcane. Residue retention led to higher N2O and CH4 emissions irrespective of N source. Both N source and residue management did not affect CO2 emissions. Sugarcane (Saccharum spp.) is a major row‐crop in the southern United States with high rates of N‐fertilizer application and unique harvest‐residue management. A 2‐yr field experiment was conducted to investigate different N‐fertilizer effects (urea and urea ammonium nitrate, UAN) and harvest‐residue managements (residue‐retain, RR, and residue‐burn, RB) on greenhouse gas (GHG) emissions from soils under sugarcane production. In 2012, a split‐plot design experiment was conducted with residue managements as main‐plots and N‐sources as sub‐plots. In 2013, two experiments were conducted to investigate UAN effect under RR and RB, and N‐source effect under RB on GHG emissions. Nitrogen was applied at 135 and 157 kg ha‒1 in 2012 and 2013, respectively. Soil GHG emissions were monitored using a closed chamber method. Results showed the majority of N2O emissions occurred within 4 wk after N‐application. Average N2O emissions from urea‐treated plots were 1.43 to 1.67 times higher compared with UAN for 2 yr. Urea had a N2O emission factor of 3.52 and 4.45% under RB and RR, respectively, whereas UAN had 1.67 and 2.46% under the same residue management. Higher N2O emission under RR treatment was supported by 15 to 20% more water‐filled pore space (WFPS) in soil than RB plots, which also increased CH4 emissions. Higher correlation was found between N2O emission and WFPS in 2012 compared with 2013 (r2 = 0.52 vs. 0.36) because a majority of the rainfall in 2012 was received within 3 wk following N application. Nitrogen sources had no effect on CH4 and CO2 emissions.
first_indexed 2024-04-12T11:50:40Z
format Article
id doaj.art-91d7e7bbb8b5492e9c76a2870a3a6487
institution Directory Open Access Journal
issn 2639-6696
language English
last_indexed 2024-04-12T11:50:40Z
publishDate 2019-01-01
publisher Wiley
record_format Article
series Agrosystems, Geosciences & Environment
spelling doaj.art-91d7e7bbb8b5492e9c76a2870a3a64872022-12-22T03:34:12ZengWileyAgrosystems, Geosciences & Environment2639-66962019-01-012111010.2134/age2019.03.0014Greenhouse Gas Emissions as Influenced by Nitrogen Fertilization and Harvest Residue Management in Sugarcane ProductionSanku Dattamudi0Jim Jian Wang1Syam K. Dodla2H. P. Viator3Ron DeLaune4April Hiscox5Murali Darapuneni6Changyoon Jeong7Patrick Colyer8School of Plant, Environmental and Soil Sciences, Louisiana State Univ. Agricultural CenterBaton RougeLA70803School of Plant, Environmental and Soil Sciences, Louisiana State Univ. Agricultural CenterBaton RougeLA70803Red River Research StationLouisiana State Univ. Agricultural Center262 Research Station DriveBossier CityLA71112Sugar Research StationLouisiana State Univ. Agricultural CenterSt. GabrielLA70776Dep. of OceanographyLouisiana State Univ.Baton RougeLA70803Dep. of GeographyUniv. of South CarolinaColumbiaSC29208Agricultural Experiment Station and Science Center at TucumcariNew Mexico State Univ.6502 Quay Rd. AM.5TucumcariNM88401Red River Research StationLouisiana State Univ. Agricultural Center262 Research Station DriveBossier CityLA71112Red River Research StationLouisiana State Univ. Agricultural Center262 Research Station DriveBossier CityLA71112Core Ideas Application of urea led to higher N2O emissions than urea–ammonium nitrate in sugarcane. Residue retention led to higher N2O and CH4 emissions irrespective of N source. Both N source and residue management did not affect CO2 emissions. Sugarcane (Saccharum spp.) is a major row‐crop in the southern United States with high rates of N‐fertilizer application and unique harvest‐residue management. A 2‐yr field experiment was conducted to investigate different N‐fertilizer effects (urea and urea ammonium nitrate, UAN) and harvest‐residue managements (residue‐retain, RR, and residue‐burn, RB) on greenhouse gas (GHG) emissions from soils under sugarcane production. In 2012, a split‐plot design experiment was conducted with residue managements as main‐plots and N‐sources as sub‐plots. In 2013, two experiments were conducted to investigate UAN effect under RR and RB, and N‐source effect under RB on GHG emissions. Nitrogen was applied at 135 and 157 kg ha‒1 in 2012 and 2013, respectively. Soil GHG emissions were monitored using a closed chamber method. Results showed the majority of N2O emissions occurred within 4 wk after N‐application. Average N2O emissions from urea‐treated plots were 1.43 to 1.67 times higher compared with UAN for 2 yr. Urea had a N2O emission factor of 3.52 and 4.45% under RB and RR, respectively, whereas UAN had 1.67 and 2.46% under the same residue management. Higher N2O emission under RR treatment was supported by 15 to 20% more water‐filled pore space (WFPS) in soil than RB plots, which also increased CH4 emissions. Higher correlation was found between N2O emission and WFPS in 2012 compared with 2013 (r2 = 0.52 vs. 0.36) because a majority of the rainfall in 2012 was received within 3 wk following N application. Nitrogen sources had no effect on CH4 and CO2 emissions.https://doi.org/10.2134/age2019.03.0014
spellingShingle Sanku Dattamudi
Jim Jian Wang
Syam K. Dodla
H. P. Viator
Ron DeLaune
April Hiscox
Murali Darapuneni
Changyoon Jeong
Patrick Colyer
Greenhouse Gas Emissions as Influenced by Nitrogen Fertilization and Harvest Residue Management in Sugarcane Production
Agrosystems, Geosciences & Environment
title Greenhouse Gas Emissions as Influenced by Nitrogen Fertilization and Harvest Residue Management in Sugarcane Production
title_full Greenhouse Gas Emissions as Influenced by Nitrogen Fertilization and Harvest Residue Management in Sugarcane Production
title_fullStr Greenhouse Gas Emissions as Influenced by Nitrogen Fertilization and Harvest Residue Management in Sugarcane Production
title_full_unstemmed Greenhouse Gas Emissions as Influenced by Nitrogen Fertilization and Harvest Residue Management in Sugarcane Production
title_short Greenhouse Gas Emissions as Influenced by Nitrogen Fertilization and Harvest Residue Management in Sugarcane Production
title_sort greenhouse gas emissions as influenced by nitrogen fertilization and harvest residue management in sugarcane production
url https://doi.org/10.2134/age2019.03.0014
work_keys_str_mv AT sankudattamudi greenhousegasemissionsasinfluencedbynitrogenfertilizationandharvestresiduemanagementinsugarcaneproduction
AT jimjianwang greenhousegasemissionsasinfluencedbynitrogenfertilizationandharvestresiduemanagementinsugarcaneproduction
AT syamkdodla greenhousegasemissionsasinfluencedbynitrogenfertilizationandharvestresiduemanagementinsugarcaneproduction
AT hpviator greenhousegasemissionsasinfluencedbynitrogenfertilizationandharvestresiduemanagementinsugarcaneproduction
AT rondelaune greenhousegasemissionsasinfluencedbynitrogenfertilizationandharvestresiduemanagementinsugarcaneproduction
AT aprilhiscox greenhousegasemissionsasinfluencedbynitrogenfertilizationandharvestresiduemanagementinsugarcaneproduction
AT muralidarapuneni greenhousegasemissionsasinfluencedbynitrogenfertilizationandharvestresiduemanagementinsugarcaneproduction
AT changyoonjeong greenhousegasemissionsasinfluencedbynitrogenfertilizationandharvestresiduemanagementinsugarcaneproduction
AT patrickcolyer greenhousegasemissionsasinfluencedbynitrogenfertilizationandharvestresiduemanagementinsugarcaneproduction