Kinetic Theory beyond the Stosszahlansatz

In a recent paper (Chliamovitch, et al., 2015), we suggested using the principle of maximum entropy to generalize Boltzmann’s Stosszahlansatz to higher-order distribution functions. This conceptual shift of focus allowed us to derive an analog of the Boltzmann equation for the two-particle distribut...

Full description

Bibliographic Details
Main Authors: Gregor Chliamovitch, Orestis Malaspinas, Bastien Chopard
Format: Article
Language:English
Published: MDPI AG 2017-07-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/19/8/381
_version_ 1798005015721279488
author Gregor Chliamovitch
Orestis Malaspinas
Bastien Chopard
author_facet Gregor Chliamovitch
Orestis Malaspinas
Bastien Chopard
author_sort Gregor Chliamovitch
collection DOAJ
description In a recent paper (Chliamovitch, et al., 2015), we suggested using the principle of maximum entropy to generalize Boltzmann’s Stosszahlansatz to higher-order distribution functions. This conceptual shift of focus allowed us to derive an analog of the Boltzmann equation for the two-particle distribution function. While we only briefly mentioned there the possibility of a hydrodynamical treatment, we complete here a crucial step towards this program. We discuss bilocal collisional invariants, from which we deduce the two-particle stationary distribution. This allows for the existence of equilibrium states in which the momenta of particles are correlated, as well as for the existence of a fourth conserved quantity besides mass, momentum and kinetic energy.
first_indexed 2024-04-11T12:32:26Z
format Article
id doaj.art-91dbfeb26e2d441f9bbd4aadf08a71cb
institution Directory Open Access Journal
issn 1099-4300
language English
last_indexed 2024-04-11T12:32:26Z
publishDate 2017-07-01
publisher MDPI AG
record_format Article
series Entropy
spelling doaj.art-91dbfeb26e2d441f9bbd4aadf08a71cb2022-12-22T04:23:43ZengMDPI AGEntropy1099-43002017-07-0119838110.3390/e19080381e19080381Kinetic Theory beyond the StosszahlansatzGregor Chliamovitch0Orestis Malaspinas1Bastien Chopard2Department of Computer Science, University of Geneva, Route de Drize 7, 1227 Geneva, SwitzerlandDepartment of Computer Science, University of Geneva, Route de Drize 7, 1227 Geneva, SwitzerlandDepartment of Computer Science, University of Geneva, Route de Drize 7, 1227 Geneva, SwitzerlandIn a recent paper (Chliamovitch, et al., 2015), we suggested using the principle of maximum entropy to generalize Boltzmann’s Stosszahlansatz to higher-order distribution functions. This conceptual shift of focus allowed us to derive an analog of the Boltzmann equation for the two-particle distribution function. While we only briefly mentioned there the possibility of a hydrodynamical treatment, we complete here a crucial step towards this program. We discuss bilocal collisional invariants, from which we deduce the two-particle stationary distribution. This allows for the existence of equilibrium states in which the momenta of particles are correlated, as well as for the existence of a fourth conserved quantity besides mass, momentum and kinetic energy.https://www.mdpi.com/1099-4300/19/8/381kinetic theorynon-equilibrium statistical mechanicsmaximum entropy principle
spellingShingle Gregor Chliamovitch
Orestis Malaspinas
Bastien Chopard
Kinetic Theory beyond the Stosszahlansatz
Entropy
kinetic theory
non-equilibrium statistical mechanics
maximum entropy principle
title Kinetic Theory beyond the Stosszahlansatz
title_full Kinetic Theory beyond the Stosszahlansatz
title_fullStr Kinetic Theory beyond the Stosszahlansatz
title_full_unstemmed Kinetic Theory beyond the Stosszahlansatz
title_short Kinetic Theory beyond the Stosszahlansatz
title_sort kinetic theory beyond the stosszahlansatz
topic kinetic theory
non-equilibrium statistical mechanics
maximum entropy principle
url https://www.mdpi.com/1099-4300/19/8/381
work_keys_str_mv AT gregorchliamovitch kinetictheorybeyondthestosszahlansatz
AT orestismalaspinas kinetictheorybeyondthestosszahlansatz
AT bastienchopard kinetictheorybeyondthestosszahlansatz