Anisotropic porous designed polymer coatings for high-performance passive all-day radiative cooling

Summary: Porous polymer radiative cooling coatings (PPCs) have attracted attention due to their ability of drawing and radiating heat from a hot object into the outer space, without any energy consumption. However, high performance of PPCs has yet to be achieved and the large-scale production of rad...

Full description

Bibliographic Details
Main Authors: Jiliang Zhu, Zhiqiang An, Anxun Zhang, Yike Du, Xuan Zhou, Yizhao Geng, Guifeng Chen
Format: Article
Language:English
Published: Elsevier 2022-04-01
Series:iScience
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2589004222003960
Description
Summary:Summary: Porous polymer radiative cooling coatings (PPCs) have attracted attention due to their ability of drawing and radiating heat from a hot object into the outer space, without any energy consumption. However, high performance of PPCs has yet to be achieved and the large-scale production of radiative cooling technology is still facing high cost and complex manufacturing constraints. Here, we propose a simple, inexpensive, scalable approach to fabricate anisotropic (P(VdF-HFP))ap PPCs (TPCs) by dissolution and diffusion between solvent and non-solvent-induced phase separation. By adjusting the porosity, pore size, and geometry, a sub-ambient temperature drop of ∼6.3°C in daytime and 10.1°C in night-time was achieved under a solar reflectance of 0.92 and an atmospheric window emittance of 0.96. A thermoelectric generator with an output voltage of almost zero reached 7 V/m2 after coating with TPCs. This could provide a convenient, economical, and environment-friendly way for PPCs materials toward efficient cooling and power generations.
ISSN:2589-0042