Optimal design of torque distribution algorithm considering battery charge strategy for hybrid electric vehicles

Hybrid electric vehicles, which have an internal combustion engine (ICE) and electric motor(s) (EMs), are effective to improve fuel consumption and exhaust emissions. We had constructed a novel energy management system (EMS) considering torque control strategy, in which a function called the torque...

Full description

Bibliographic Details
Main Authors: Marina SAIKYO, Satoshi KITAYAMA, Yui NISHIO, Kojiro TSUTSUMI
Format: Article
Language:Japanese
Published: The Japan Society of Mechanical Engineers 2016-03-01
Series:Nihon Kikai Gakkai ronbunshu
Subjects:
Online Access:https://www.jstage.jst.go.jp/article/transjsme/82/836/82_15-00625/_pdf/-char/en
Description
Summary:Hybrid electric vehicles, which have an internal combustion engine (ICE) and electric motor(s) (EMs), are effective to improve fuel consumption and exhaust emissions. We had constructed a novel energy management system (EMS) considering torque control strategy, in which a function called the torque control function was introduced to reduce CO2 and NOx emissions. However, only the regenerative braking was used for battery charge in the EMS. In this paper, an improved EMS considering the battery charge by ICE is proposed. To charge the battery, a charge torque considering the target state of charge (SOC) is newly introduced. To determine the torque control function and the charge torque, a sequential approximate optimization using a radial basis function network is adopted. CO2 and NOx are then simultaneously minimized. A multi-objective design optimization is the formulated, and the torque control function and charge torque are determined with a small number of simulation runs. Through the numerical simulation, the validity of proposed EMS is examined.
ISSN:2187-9761