Flux compactifications and naturalness

Abstract Free massless scalars have a shift symmetry. This is usually broken by gauge and Yukawa interactions, such that quantum corrections induce a quadratically divergent mass term. In the Standard Model this leads to the hierarchy problem of the electroweak theory, the question why the Higgs mas...

Full description

Bibliographic Details
Main Authors: Wilfried Buchmuller, Markus Dierigl, Emilian Dudas
Format: Article
Language:English
Published: SpringerOpen 2018-08-01
Series:Journal of High Energy Physics
Subjects:
Online Access:http://link.springer.com/article/10.1007/JHEP08(2018)151
Description
Summary:Abstract Free massless scalars have a shift symmetry. This is usually broken by gauge and Yukawa interactions, such that quantum corrections induce a quadratically divergent mass term. In the Standard Model this leads to the hierarchy problem of the electroweak theory, the question why the Higgs mass is so much smaller than the Planck mass. We present an example where a large scalar mass term is avoided by coupling the scalar to an infinite tower of massive states which are obtained from a six-dimensional theory compactified on a torus with magnetic flux. The series of divergent quantum corrections adds up to zero, and we show explicitly that the shift symmetry of the scalar is preserved in the effective four-dimensional theory despite the presence of gauge and Yukawa interaction terms.
ISSN:1029-8479