Biomimetic Conversion of Glucose to Organic Acid Facilitated by Metalloporphyrin under Mild Conditions
Biomimetic catalytic conversion of carbohydrates to low-molecular weight (LWM) organic acids was investigated in the presence of sulfonated metalloporphyrins (MTSPP, M = Fe, Mn, Co, Cu), with dioxygen as the oxidant. The results showed that the selectivity of lactic acid reached 70%, starting from g...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
North Carolina State University
2016-10-01
|
Series: | BioResources |
Subjects: | |
Online Access: | http://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_11_4_10251_Liu_Biomimetic_Conversion_Glucose_Organic_Acid |
Summary: | Biomimetic catalytic conversion of carbohydrates to low-molecular weight (LWM) organic acids was investigated in the presence of sulfonated metalloporphyrins (MTSPP, M = Fe, Mn, Co, Cu), with dioxygen as the oxidant. The results showed that the selectivity of lactic acid reached 70%, starting from glucose with an iron complex of meso-tetra(4-sulfonato-phenyl)porphyrin (TSPPFeCl) as the catalyst at 433 K, and 0.6 MPa of O2 in 0.05 M NaOH aqueous solution. The effects of various metalloporphyrins on the selectivity of oxidative products were also considered. Experimental results show that TSPPFeCl exhibited the highest catalytic performance compared with TSPPMnCl, TSPPCo, and TSPPCu. |
---|---|
ISSN: | 1930-2126 1930-2126 |