A note on Fibonacci and Lucas number of domination in path

<p>Let <span class="math"><em>G</em> = (<em>V</em>(<em>G</em>), <em>E</em>(<em>G</em>))</span> be a path of order <span class="math"><em>n</em> ≥ 1</span>. Let <span class=&qu...

Full description

Bibliographic Details
Main Author: Leomarich F Casinillo
Format: Article
Language:English
Published: Indonesian Combinatorial Society (InaCombS); Graph Theory and Applications (GTA) Research Centre; University of Newcastle, Australia; Institut Teknologi Bandung (ITB), Indonesia 2018-10-01
Series:Electronic Journal of Graph Theory and Applications
Subjects:
Online Access:https://www.ejgta.org/index.php/ejgta/article/view/333
Description
Summary:<p>Let <span class="math"><em>G</em> = (<em>V</em>(<em>G</em>), <em>E</em>(<em>G</em>))</span> be a path of order <span class="math"><em>n</em> ≥ 1</span>. Let <span class="math"><em>f</em><sub><em>m</em></sub>(<em>G</em>)</span> be a path with <span class="math"><em>m</em> ≥ 0</span> independent dominating vertices which follows a Fibonacci string of binary numbers where <span class="math">1</span> is the dominating vertex. A set <span class="math"><em>F</em>(<em>G</em>)</span> contains all possible <span class="math"><em>f</em><sub><em>m</em></sub>(<em>G</em>)</span>, <span class="math"><em>m</em> ≥ 0, </span> having the cardinality of the Fibonacci number <span class="math"><em>F</em><sub><em>n</em> + 2</sub></span>. Let <span class="math"><em>F</em><sub><em>d</em></sub>(<em>G</em>)</span> be a set of <span class="math"><em>f</em><sub><em>m</em></sub>(<em>G</em>)</span> where <span class="math"><em>m</em> = <em>i</em>(<em>G</em>)</span> and <span class="math"><em>F</em><sub><em>d</em></sub><sup><em>m</em><em>a</em><em>x</em></sup>(<em>G</em>)</span> be a set of paths with maximum independent dominating vertices. Let <span class="math"><em>l</em><sub><em>m</em></sub>(<em>G</em>)</span> be a path with <span class="math"><em>m</em> ≥ 0</span> independent dominating vertices which follows a Lucas string of binary numbers where <span class="math">1</span> is the dominating vertex. A set <span class="math"><em>L</em>(<em>G</em>)</span> contains all possible <span class="math"><em>l</em><sub><em>m</em></sub>(<em>G</em>)</span>, <span class="math"><em>m</em> ≥ 0</span>, having the cardinality of the Lucas number <span class="math"><em>L</em><sub><em>n</em></sub></span>. Let <span class="math"><em>L</em><sub><em>d</em></sub>(<em>G</em>)</span> be a set of <span class="math"><em>l</em><sub><em>m</em></sub>(<em>G</em>)</span> where <span class="math"><em>m</em> = <em>i</em>(<em>G</em>)</span> and <span class="math"><em>L</em><sub><em>d</em></sub><sup><em>m</em><em>a</em><em>x</em></sup>(<em>G</em>)</span> be a set of paths with maximum independent dominating vertices. This paper determines the number of possible elements in the sets <span class="math"><em>F</em><sub><em>d</em></sub>(<em>G</em>)</span>, <span class="math"><em>L</em><sub><em>d</em></sub>(<em>G</em>), <em>F</em><sub><em>d</em></sub><sup><em>m</em><em>a</em><em>x</em></sup>(<em>G</em>)</span> and <span class="math"><em>L</em><sub><em>d</em></sub><sup><em>m</em><em>a</em><em>x</em></sup>(<em>G</em>)</span> by constructing a combinatorial formula. Furthermore, we examine some properties of <span class="math"><em>F</em>(<em>G</em>)</span> and <span class="math"><em>L</em>(<em>G</em>)</span> and give some important results.</p>
ISSN:2338-2287