Summary: | Information about the forty nine nitraminic plastic bonded explosives (PBXs) and different nitramines were collected. Fillers of these PBXs are nitramines 1,3,5-trinitro-1,3,5-triazinane (RDX) and β-1,3,5,7-tetranitro-1,3,5-tetrazocane (β-HMX), cis-1,3,4,6-tetranitro-octahydroimidazo-[4,5-d]imidazole (bicyclo-HMX, BCHMX) and ε-2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (ε-HNIW, CL-20) which are bonded by polyfluoro-elastomers, polydimethyl-siloxane, poly-glycidyl azide, polyisobutylene, polystyrene-butadiene, poly-acrylonitrile-butadiene and hydroxyl-terminated polybutadiene in addition to a melt cast compositions based on 2,4,6-trinitrotoluene. For thirty two of these PBXs the relationships are specified and analyzed between heats of their combustion and relative explosive strengths; by means of these relationships it might be possible to estimate, which groupings in the macromolecule of binder could be liable to their primary fission in the PBXs initiation. Similarly, for forty two of these explosives, the relationships are described and analyzed between their enthalpies of formation and impact sensitivities; here is especially attention paid to PBXs filled by BCHMX. Specific rate constants from Vacuum Stability Test (VST) of four nitramines and twenty PBXs are introduced into relationships with their enthalpies of formation. Regarding to all the mentioned cases, increasing of energy content of the studied explosives leads to increase of the relative explosive strength or initiation reactivity, respectively. Exception with the opposite trend, the outputs of VST are for BCHMX, where in PBXs are matrices with the esteric plasticizers or the energetic poly-glycidyl azide. Admixture of RDX or HMX, respectively, into the BCHX PBXs gives ternary PBXs whose thermal stability, in the sense of applied VST, is higher comparing to the original binary explosives. Keywords: Enthalpy, Explosive strength, Combustion, Sensitivity, Nitramines, PBX, Thermal stability
|