Summary: | In this paper, under the condition of bidirectional stress, the buckling deformation of the side plate in a rectangular concrete-filled steel tube (CFST) column has been studied in detail. We have conducted a theocratical analysis, an experimental validation and a finite element simulation to investigate the influences of the height-width ratios and Nominal Poisson’s ratios on the buckling form of the side plate, and we also try to explain the change of buckling form between unidirectional and bidirectional stress, both of them can provide a good reference and basis for design and application of the CFST column. The specific work can be summarized as follows: Firstly, a theoretical analysis has been conducted to study the buckling coefficient solution method of the thin plate under the conditions of axial compress and transverse tension. Then, under the conditions of the unidirectional and the bidirectional stress, a comparative study is carried out to investigate the changing relationship of the buckling coefficient (<i>k</i>) of the side plate; the results indicate that the buckling characteristic is changed due to the bidirectional stress, meanwhile, the buckling coefficient and the number of buckling half-wave will increase. Furthermore, the existing outcomes and the numerical simulations are adopted to study the relevance between the number of the elastic buckling half-wave in the side plate and the corresponding height-width ratio of the component; the results indicate that the former is larger than the latter. Finally, based on the obtained, the buckling relationship curve, the conclusion can be drawn as follows: when the bidirectional stress has been applied to the side plate, there is an equal interval between the different buckling half-waves; meanwhile, the interval shows a quadratic function reduce trend with the increase of nominal Poisson’s ratio.
|