More on fast decreasing trigonometric polynomials
In a recent paper, for a fixed $m\in\mathbb N$, we introduced trigonometric polynomials $$ L_n(x):=\frac1{h^m}\underbrace{\int_{-h/2}^{h/2}\dots\int_{-h/2}^{h/2}}_{m\,\text{times}}J_n(x+t_1+\cdots+t_m)\,dt_1\cdots\,dt_m, $$ where $J_n$ is a Jackson-type kernel. In the current paper we show that...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Oles Honchar Dnipro National University
2024-12-01
|
Series: | Researches in Mathematics |
Subjects: | |
Online Access: | https://vestnmath.dnu.dp.ua/index.php/rim/article/view/435/435 |
_version_ | 1826900444198207488 |
---|---|
author | D. Leviatan O.V. Motorna I.O. Shevchuk |
author_facet | D. Leviatan O.V. Motorna I.O. Shevchuk |
author_sort | D. Leviatan |
collection | DOAJ |
description | In a recent paper, for a fixed $m\in\mathbb N$, we introduced trigonometric polynomials
$$
L_n(x):=\frac1{h^m}\underbrace{\int_{-h/2}^{h/2}\dots\int_{-h/2}^{h/2}}_{m\,\text{times}}J_n(x+t_1+\cdots+t_m)\,dt_1\cdots\,dt_m,
$$
where $J_n$ is a Jackson-type kernel. In the current paper we show that $L_n$ and its first $m-1$ derivatives provide approximation to the $B$-spline of degree $m-1$ and its respective derivatives. |
first_indexed | 2025-02-17T07:08:45Z |
format | Article |
id | doaj.art-922e38755bdf4e088a8e9aae6af2d03c |
institution | Directory Open Access Journal |
issn | 2664-4991 2664-5009 |
language | English |
last_indexed | 2025-02-17T07:08:45Z |
publishDate | 2024-12-01 |
publisher | Oles Honchar Dnipro National University |
record_format | Article |
series | Researches in Mathematics |
spelling | doaj.art-922e38755bdf4e088a8e9aae6af2d03c2025-01-05T19:35:29ZengOles Honchar Dnipro National UniversityResearches in Mathematics2664-49912664-50092024-12-0132210111410.15421/242422More on fast decreasing trigonometric polynomialsD. Leviatan0https://orcid.org/0000-0003-0180-5065O.V. Motorna1https://orcid.org/0009-0003-4963-3239I.O. Shevchuk2https://orcid.org/0000-0003-1140-373XTel Aviv UniversityTaras Shevchenko Kyiv National UniversityTaras Shevchenko National University of KyivIn a recent paper, for a fixed $m\in\mathbb N$, we introduced trigonometric polynomials $$ L_n(x):=\frac1{h^m}\underbrace{\int_{-h/2}^{h/2}\dots\int_{-h/2}^{h/2}}_{m\,\text{times}}J_n(x+t_1+\cdots+t_m)\,dt_1\cdots\,dt_m, $$ where $J_n$ is a Jackson-type kernel. In the current paper we show that $L_n$ and its first $m-1$ derivatives provide approximation to the $B$-spline of degree $m-1$ and its respective derivatives.https://vestnmath.dnu.dp.ua/index.php/rim/article/view/435/435b-splinesfast decreasing trigonometric polynomials |
spellingShingle | D. Leviatan O.V. Motorna I.O. Shevchuk More on fast decreasing trigonometric polynomials Researches in Mathematics b-splines fast decreasing trigonometric polynomials |
title | More on fast decreasing trigonometric polynomials |
title_full | More on fast decreasing trigonometric polynomials |
title_fullStr | More on fast decreasing trigonometric polynomials |
title_full_unstemmed | More on fast decreasing trigonometric polynomials |
title_short | More on fast decreasing trigonometric polynomials |
title_sort | more on fast decreasing trigonometric polynomials |
topic | b-splines fast decreasing trigonometric polynomials |
url | https://vestnmath.dnu.dp.ua/index.php/rim/article/view/435/435 |
work_keys_str_mv | AT dleviatan moreonfastdecreasingtrigonometricpolynomials AT ovmotorna moreonfastdecreasingtrigonometricpolynomials AT ioshevchuk moreonfastdecreasingtrigonometricpolynomials |