More on fast decreasing trigonometric polynomials

In a recent paper, for a fixed $m\in\mathbb N$, we introduced trigonometric polynomials $$ L_n(x):=\frac1{h^m}\underbrace{\int_{-h/2}^{h/2}\dots\int_{-h/2}^{h/2}}_{m\,\text{times}}J_n(x+t_1+\cdots+t_m)\,dt_1\cdots\,dt_m, $$ where $J_n$ is a Jackson-type kernel. In the current paper we show that...

Full description

Bibliographic Details
Main Authors: D. Leviatan, O.V. Motorna, I.O. Shevchuk
Format: Article
Language:English
Published: Oles Honchar Dnipro National University 2024-12-01
Series:Researches in Mathematics
Subjects:
Online Access:https://vestnmath.dnu.dp.ua/index.php/rim/article/view/435/435
_version_ 1826900444198207488
author D. Leviatan
O.V. Motorna
I.O. Shevchuk
author_facet D. Leviatan
O.V. Motorna
I.O. Shevchuk
author_sort D. Leviatan
collection DOAJ
description In a recent paper, for a fixed $m\in\mathbb N$, we introduced trigonometric polynomials $$ L_n(x):=\frac1{h^m}\underbrace{\int_{-h/2}^{h/2}\dots\int_{-h/2}^{h/2}}_{m\,\text{times}}J_n(x+t_1+\cdots+t_m)\,dt_1\cdots\,dt_m, $$ where $J_n$ is a Jackson-type kernel. In the current paper we show that $L_n$ and its first $m-1$ derivatives provide approximation to the $B$-spline of degree $m-1$ and its respective derivatives.
first_indexed 2025-02-17T07:08:45Z
format Article
id doaj.art-922e38755bdf4e088a8e9aae6af2d03c
institution Directory Open Access Journal
issn 2664-4991
2664-5009
language English
last_indexed 2025-02-17T07:08:45Z
publishDate 2024-12-01
publisher Oles Honchar Dnipro National University
record_format Article
series Researches in Mathematics
spelling doaj.art-922e38755bdf4e088a8e9aae6af2d03c2025-01-05T19:35:29ZengOles Honchar Dnipro National UniversityResearches in Mathematics2664-49912664-50092024-12-0132210111410.15421/242422More on fast decreasing trigonometric polynomialsD. Leviatan0https://orcid.org/0000-0003-0180-5065O.V. Motorna1https://orcid.org/0009-0003-4963-3239I.O. Shevchuk2https://orcid.org/0000-0003-1140-373XTel Aviv UniversityTaras Shevchenko Kyiv National UniversityTaras Shevchenko National University of KyivIn a recent paper, for a fixed $m\in\mathbb N$, we introduced trigonometric polynomials $$ L_n(x):=\frac1{h^m}\underbrace{\int_{-h/2}^{h/2}\dots\int_{-h/2}^{h/2}}_{m\,\text{times}}J_n(x+t_1+\cdots+t_m)\,dt_1\cdots\,dt_m, $$ where $J_n$ is a Jackson-type kernel. In the current paper we show that $L_n$ and its first $m-1$ derivatives provide approximation to the $B$-spline of degree $m-1$ and its respective derivatives.https://vestnmath.dnu.dp.ua/index.php/rim/article/view/435/435b-splinesfast decreasing trigonometric polynomials
spellingShingle D. Leviatan
O.V. Motorna
I.O. Shevchuk
More on fast decreasing trigonometric polynomials
Researches in Mathematics
b-splines
fast decreasing trigonometric polynomials
title More on fast decreasing trigonometric polynomials
title_full More on fast decreasing trigonometric polynomials
title_fullStr More on fast decreasing trigonometric polynomials
title_full_unstemmed More on fast decreasing trigonometric polynomials
title_short More on fast decreasing trigonometric polynomials
title_sort more on fast decreasing trigonometric polynomials
topic b-splines
fast decreasing trigonometric polynomials
url https://vestnmath.dnu.dp.ua/index.php/rim/article/view/435/435
work_keys_str_mv AT dleviatan moreonfastdecreasingtrigonometricpolynomials
AT ovmotorna moreonfastdecreasingtrigonometricpolynomials
AT ioshevchuk moreonfastdecreasingtrigonometricpolynomials