Summary: | As a safety device, a rupture disc instantly bursts as a nonreclosing pressure relief component to minimize the explosion risk once the internal pressure of vessels or pipes exceeds a critical level. In this study, the influence of temperature on the ultimate burst pressure of domed rupture discs made of 316L austenitic stainless steel was experimentally investigated and assessed with finite element analysis. Experimental results showed that the ultimate burst pressure gradually reduced from 6.88 MPa to 5.24 MPa with increasing temperature from 300 K to 573 K, which are consistent with the predicted instability pressures acquired by nonlinear buckling analysis using ABAQUS software. Additionally, it was found that a gradual transition from opening ductile mode to cleavage mode happened with increasing temperature due to more cross slips occurring under serious plastic deformation. The equivalent stress, equivalent strain and strain hardening rates acquired by static analysis were effective at rationalizing the temperature-dependent fracture behavior of the domed rupture discs.
|