Extending Chestnut Blight Hypovirus Host Range Within Diaporthales by Biolistic Delivery of Viral cDNA
Biolistic bombardment was used to successfully transform three phytopathogenic fungal species with an infectious cDNA clone of the prototypic hypovirus, CHV1-EP713, a genetic element responsible for the virulence attenuation (hypovirulence) of the chestnut blight fungus, Cryphonectria parasitica. Th...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
The American Phytopathological Society
2002-08-01
|
Series: | Molecular Plant-Microbe Interactions |
Online Access: | https://apsjournals.apsnet.org/doi/10.1094/MPMI.2002.15.8.780 |
_version_ | 1818669116855156736 |
---|---|
author | Atsuko Sasaki Mari Onoue Satoko Kanematsu Kouich Suzaki Masaki Miyanishi Nobuhiro Suzuki Donald L. Nuss Kouji Yoshida |
author_facet | Atsuko Sasaki Mari Onoue Satoko Kanematsu Kouich Suzaki Masaki Miyanishi Nobuhiro Suzuki Donald L. Nuss Kouji Yoshida |
author_sort | Atsuko Sasaki |
collection | DOAJ |
description | Biolistic bombardment was used to successfully transform three phytopathogenic fungal species with an infectious cDNA clone of the prototypic hypovirus, CHV1-EP713, a genetic element responsible for the virulence attenuation (hypovirulence) of the chestnut blight fungus, Cryphonectria parasitica. The fungal species included two strains each of C. parasitica and Valsa ceratosperma, as well as one strain of Phomopsis G-type (teleomorph Diaporthe Nitschke); all are members of the order Diaporthales but classified into three different genera. A subset of transformants for each of the fungal species contained CHV1-EP713 dsRNA derived from chromosomally integrated viral cDNA. As has been reported for CHV1-EP713 infection of the natural host C. parasitica, biolistic introduction of CHV1-EP713 into the new fungal hosts V. ceratosperma and Phomopsis G-type resulted in altered colony morphology and, more importantly, reduced virulence. These results suggest a potential for hypoviruses as biological control agents in plant-infecting fungal pathogens other than the chestnut blight fungus and closely related species. In addition, the particle delivery technique offers a convenient means of transmitting hypoviruses to potential host fungi that provides new avenues for fundamental mycovirus research and may have practical applications for conferring hypovirulence directly on infected plants in the field. |
first_indexed | 2024-12-17T06:47:06Z |
format | Article |
id | doaj.art-9237e343bb3042efbdff3bc9d9cd91ce |
institution | Directory Open Access Journal |
issn | 0894-0282 1943-7706 |
language | English |
last_indexed | 2024-12-17T06:47:06Z |
publishDate | 2002-08-01 |
publisher | The American Phytopathological Society |
record_format | Article |
series | Molecular Plant-Microbe Interactions |
spelling | doaj.art-9237e343bb3042efbdff3bc9d9cd91ce2022-12-21T21:59:43ZengThe American Phytopathological SocietyMolecular Plant-Microbe Interactions0894-02821943-77062002-08-0115878078910.1094/MPMI.2002.15.8.780Extending Chestnut Blight Hypovirus Host Range Within Diaporthales by Biolistic Delivery of Viral cDNAAtsuko SasakiMari OnoueSatoko KanematsuKouich SuzakiMasaki MiyanishiNobuhiro SuzukiDonald L. NussKouji YoshidaBiolistic bombardment was used to successfully transform three phytopathogenic fungal species with an infectious cDNA clone of the prototypic hypovirus, CHV1-EP713, a genetic element responsible for the virulence attenuation (hypovirulence) of the chestnut blight fungus, Cryphonectria parasitica. The fungal species included two strains each of C. parasitica and Valsa ceratosperma, as well as one strain of Phomopsis G-type (teleomorph Diaporthe Nitschke); all are members of the order Diaporthales but classified into three different genera. A subset of transformants for each of the fungal species contained CHV1-EP713 dsRNA derived from chromosomally integrated viral cDNA. As has been reported for CHV1-EP713 infection of the natural host C. parasitica, biolistic introduction of CHV1-EP713 into the new fungal hosts V. ceratosperma and Phomopsis G-type resulted in altered colony morphology and, more importantly, reduced virulence. These results suggest a potential for hypoviruses as biological control agents in plant-infecting fungal pathogens other than the chestnut blight fungus and closely related species. In addition, the particle delivery technique offers a convenient means of transmitting hypoviruses to potential host fungi that provides new avenues for fundamental mycovirus research and may have practical applications for conferring hypovirulence directly on infected plants in the field.https://apsjournals.apsnet.org/doi/10.1094/MPMI.2002.15.8.780 |
spellingShingle | Atsuko Sasaki Mari Onoue Satoko Kanematsu Kouich Suzaki Masaki Miyanishi Nobuhiro Suzuki Donald L. Nuss Kouji Yoshida Extending Chestnut Blight Hypovirus Host Range Within Diaporthales by Biolistic Delivery of Viral cDNA Molecular Plant-Microbe Interactions |
title | Extending Chestnut Blight Hypovirus Host Range Within Diaporthales by Biolistic Delivery of Viral cDNA |
title_full | Extending Chestnut Blight Hypovirus Host Range Within Diaporthales by Biolistic Delivery of Viral cDNA |
title_fullStr | Extending Chestnut Blight Hypovirus Host Range Within Diaporthales by Biolistic Delivery of Viral cDNA |
title_full_unstemmed | Extending Chestnut Blight Hypovirus Host Range Within Diaporthales by Biolistic Delivery of Viral cDNA |
title_short | Extending Chestnut Blight Hypovirus Host Range Within Diaporthales by Biolistic Delivery of Viral cDNA |
title_sort | extending chestnut blight hypovirus host range within diaporthales by biolistic delivery of viral cdna |
url | https://apsjournals.apsnet.org/doi/10.1094/MPMI.2002.15.8.780 |
work_keys_str_mv | AT atsukosasaki extendingchestnutblighthypovirushostrangewithindiaporthalesbybiolisticdeliveryofviralcdna AT marionoue extendingchestnutblighthypovirushostrangewithindiaporthalesbybiolisticdeliveryofviralcdna AT satokokanematsu extendingchestnutblighthypovirushostrangewithindiaporthalesbybiolisticdeliveryofviralcdna AT kouichsuzaki extendingchestnutblighthypovirushostrangewithindiaporthalesbybiolisticdeliveryofviralcdna AT masakimiyanishi extendingchestnutblighthypovirushostrangewithindiaporthalesbybiolisticdeliveryofviralcdna AT nobuhirosuzuki extendingchestnutblighthypovirushostrangewithindiaporthalesbybiolisticdeliveryofviralcdna AT donaldlnuss extendingchestnutblighthypovirushostrangewithindiaporthalesbybiolisticdeliveryofviralcdna AT koujiyoshida extendingchestnutblighthypovirushostrangewithindiaporthalesbybiolisticdeliveryofviralcdna |