Not all types of secondary organic aerosol mix: two phases observed when mixing different secondary organic aerosol types

<p>Secondary organic aerosol (SOA) constitutes a large fraction of atmospheric aerosol. To assess its impacts on climate and air pollution, knowledge of the number of phases in internal mixtures of different SOA types is required. Atmospheric models often assume that different SOA types form a...

Full description

Bibliographic Details
Main Authors: F. Mahrt, L. Peng, J. Zaks, Y. Huang, P. E. Ohno, N. R. Smith, F. K. A. Gregson, Y. Qin, C. L. Faiola, S. T. Martin, S. A. Nizkorodov, M. Ammann, A. K. Bertram
Format: Article
Language:English
Published: Copernicus Publications 2022-11-01
Series:Atmospheric Chemistry and Physics
Online Access:https://acp.copernicus.org/articles/22/13783/2022/acp-22-13783-2022.pdf
_version_ 1811332709202526208
author F. Mahrt
F. Mahrt
L. Peng
L. Peng
L. Peng
J. Zaks
Y. Huang
Y. Huang
P. E. Ohno
P. E. Ohno
P. E. Ohno
N. R. Smith
F. K. A. Gregson
Y. Qin
Y. Qin
C. L. Faiola
C. L. Faiola
S. T. Martin
S. T. Martin
S. A. Nizkorodov
M. Ammann
A. K. Bertram
author_facet F. Mahrt
F. Mahrt
L. Peng
L. Peng
L. Peng
J. Zaks
Y. Huang
Y. Huang
P. E. Ohno
P. E. Ohno
P. E. Ohno
N. R. Smith
F. K. A. Gregson
Y. Qin
Y. Qin
C. L. Faiola
C. L. Faiola
S. T. Martin
S. T. Martin
S. A. Nizkorodov
M. Ammann
A. K. Bertram
author_sort F. Mahrt
collection DOAJ
description <p>Secondary organic aerosol (SOA) constitutes a large fraction of atmospheric aerosol. To assess its impacts on climate and air pollution, knowledge of the number of phases in internal mixtures of different SOA types is required. Atmospheric models often assume that different SOA types form a single phase when mixed. Here, we present visual observations of the number of phases formed after mixing different anthropogenic and biogenic SOA types. Mixing SOA types generated in environmental chambers with oxygen-to-carbon (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><mi mathvariant="normal">O</mi><mo>/</mo><mi mathvariant="normal">C</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="528ec602ad41012dbd8700839f42941d"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-13783-2022-ie00001.svg" width="25pt" height="14pt" src="acp-22-13783-2022-ie00001.png"/></svg:svg></span></span>) ratios between 0.34 and 1.05, we found 6 out of 15 mixtures of two SOA types to result in two phase particles. We demonstrate that the number of phases depends on the difference in the average <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M2" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><mi mathvariant="normal">O</mi><mo>/</mo><mi mathvariant="normal">C</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="aa3ee63d16a9544135a7a9f6ec90028c"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-13783-2022-ie00002.svg" width="25pt" height="14pt" src="acp-22-13783-2022-ie00002.png"/></svg:svg></span></span> ratio between the two SOA types (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi mathvariant="normal">Δ</mi><mo>(</mo><mrow class="chem"><mi mathvariant="normal">O</mi><mo>/</mo><mi mathvariant="normal">C</mi></mrow><mo>)</mo></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="40pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="328195da7909b5c4cb614c0bf8a8bd94"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-13783-2022-ie00003.svg" width="40pt" height="14pt" src="acp-22-13783-2022-ie00003.png"/></svg:svg></span></span>). Using a threshold <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi mathvariant="normal">Δ</mi><mo>(</mo><mrow class="chem"><mi mathvariant="normal">O</mi><mo>/</mo><mi mathvariant="normal">C</mi></mrow><mo>)</mo></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="40pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="345ea5224389a4431c174ed792bf652a"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-13783-2022-ie00004.svg" width="40pt" height="14pt" src="acp-22-13783-2022-ie00004.png"/></svg:svg></span></span> of 0.47, we can predict the phase behavior of over 90 % of our mixtures, with one- and two-phase particles predicted for <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M5" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi mathvariant="normal">Δ</mi><mo>(</mo><mrow class="chem"><mi mathvariant="normal">O</mi><mo>/</mo><mi mathvariant="normal">C</mi></mrow><mo>)</mo><mi mathvariant="italic">&lt;</mi><mn mathvariant="normal">0.47</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="69pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="85e11743d368a34615b250aed7486249"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-13783-2022-ie00005.svg" width="69pt" height="14pt" src="acp-22-13783-2022-ie00005.png"/></svg:svg></span></span> and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi mathvariant="normal">Δ</mi><mo>(</mo><mrow class="chem"><mi mathvariant="normal">O</mi><mo>/</mo><mi mathvariant="normal">C</mi></mrow><mo>)</mo><mo>≥</mo><mn mathvariant="normal">0.47</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="74pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="cffdd3a40a1ec62543c0ff65ba1e271e"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-13783-2022-ie00006.svg" width="74pt" height="14pt" src="acp-22-13783-2022-ie00006.png"/></svg:svg></span></span>, respectively. This threshold <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M7" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi mathvariant="normal">Δ</mi><mrow class="chem"><mi mathvariant="normal">O</mi><mo>/</mo><mi mathvariant="normal">C</mi></mrow></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="33pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="770fa35bca8ef870e4a32e2278a43243"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-13783-2022-ie00007.svg" width="33pt" height="14pt" src="acp-22-13783-2022-ie00007.png"/></svg:svg></span></span> value provides a simple parameter to predict whether mixtures of fresh and aged SOA form one- or two-phase particles in the atmosphere. In addition, we show that phase-separated SOA particles form when mixtures of volatile organic compounds emitted from real trees are oxidized.</p>
first_indexed 2024-04-13T16:40:10Z
format Article
id doaj.art-923b1c33517241d280ac5da33aadcbe0
institution Directory Open Access Journal
issn 1680-7316
1680-7324
language English
last_indexed 2024-04-13T16:40:10Z
publishDate 2022-11-01
publisher Copernicus Publications
record_format Article
series Atmospheric Chemistry and Physics
spelling doaj.art-923b1c33517241d280ac5da33aadcbe02022-12-22T02:39:15ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242022-11-0122137831379610.5194/acp-22-13783-2022Not all types of secondary organic aerosol mix: two phases observed when mixing different secondary organic aerosol typesF. Mahrt0F. Mahrt1L. Peng2L. Peng3L. Peng4J. Zaks5Y. Huang6Y. Huang7P. E. Ohno8P. E. Ohno9P. E. Ohno10N. R. Smith11F. K. A. Gregson12Y. Qin13Y. Qin14C. L. Faiola15C. L. Faiola16S. T. Martin17S. T. Martin18S. A. Nizkorodov19M. Ammann20A. K. Bertram21Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T1Z1 CanadaLaboratory of Environmental Chemistry, Paul Scherrer Institute, 5232 Villigen, SwitzerlandDepartment of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T1Z1 CanadaInstitute for Environmental and Climate Research, Jinan University, Guangzhou 511443, Chinanow at: College of Ecology and Environment, Xinjiang University, Urumqi 830017, ChinaDepartment of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T1Z1 CanadaDepartment of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T1Z1 Canadanow at: Anton Paar Canada Inc., 4920 Place Olivia, H4R 2Z8 Saint Laurent, CanadaJohn A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USACenter for the Environment, Harvard University, Cambridge, MA 02138, USAnow at: Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849, USADepartment of Chemistry, University of California, Irvine, Irvine, CA 92697, USADepartment of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T1Z1 CanadaJohn A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USAnow at: Department of Chemistry, University of California, Irvine, CA 92697-2025, USADepartment of Chemistry, University of California, Irvine, Irvine, CA 92697, USADepartment of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA 92697, USAJohn A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USADepartment of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138, USADepartment of Chemistry, University of California, Irvine, Irvine, CA 92697, USALaboratory of Environmental Chemistry, Paul Scherrer Institute, 5232 Villigen, SwitzerlandDepartment of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T1Z1 Canada<p>Secondary organic aerosol (SOA) constitutes a large fraction of atmospheric aerosol. To assess its impacts on climate and air pollution, knowledge of the number of phases in internal mixtures of different SOA types is required. Atmospheric models often assume that different SOA types form a single phase when mixed. Here, we present visual observations of the number of phases formed after mixing different anthropogenic and biogenic SOA types. Mixing SOA types generated in environmental chambers with oxygen-to-carbon (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><mi mathvariant="normal">O</mi><mo>/</mo><mi mathvariant="normal">C</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="528ec602ad41012dbd8700839f42941d"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-13783-2022-ie00001.svg" width="25pt" height="14pt" src="acp-22-13783-2022-ie00001.png"/></svg:svg></span></span>) ratios between 0.34 and 1.05, we found 6 out of 15 mixtures of two SOA types to result in two phase particles. We demonstrate that the number of phases depends on the difference in the average <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M2" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><mi mathvariant="normal">O</mi><mo>/</mo><mi mathvariant="normal">C</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="aa3ee63d16a9544135a7a9f6ec90028c"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-13783-2022-ie00002.svg" width="25pt" height="14pt" src="acp-22-13783-2022-ie00002.png"/></svg:svg></span></span> ratio between the two SOA types (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi mathvariant="normal">Δ</mi><mo>(</mo><mrow class="chem"><mi mathvariant="normal">O</mi><mo>/</mo><mi mathvariant="normal">C</mi></mrow><mo>)</mo></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="40pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="328195da7909b5c4cb614c0bf8a8bd94"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-13783-2022-ie00003.svg" width="40pt" height="14pt" src="acp-22-13783-2022-ie00003.png"/></svg:svg></span></span>). Using a threshold <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi mathvariant="normal">Δ</mi><mo>(</mo><mrow class="chem"><mi mathvariant="normal">O</mi><mo>/</mo><mi mathvariant="normal">C</mi></mrow><mo>)</mo></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="40pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="345ea5224389a4431c174ed792bf652a"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-13783-2022-ie00004.svg" width="40pt" height="14pt" src="acp-22-13783-2022-ie00004.png"/></svg:svg></span></span> of 0.47, we can predict the phase behavior of over 90 % of our mixtures, with one- and two-phase particles predicted for <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M5" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi mathvariant="normal">Δ</mi><mo>(</mo><mrow class="chem"><mi mathvariant="normal">O</mi><mo>/</mo><mi mathvariant="normal">C</mi></mrow><mo>)</mo><mi mathvariant="italic">&lt;</mi><mn mathvariant="normal">0.47</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="69pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="85e11743d368a34615b250aed7486249"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-13783-2022-ie00005.svg" width="69pt" height="14pt" src="acp-22-13783-2022-ie00005.png"/></svg:svg></span></span> and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi mathvariant="normal">Δ</mi><mo>(</mo><mrow class="chem"><mi mathvariant="normal">O</mi><mo>/</mo><mi mathvariant="normal">C</mi></mrow><mo>)</mo><mo>≥</mo><mn mathvariant="normal">0.47</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="74pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="cffdd3a40a1ec62543c0ff65ba1e271e"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-13783-2022-ie00006.svg" width="74pt" height="14pt" src="acp-22-13783-2022-ie00006.png"/></svg:svg></span></span>, respectively. This threshold <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M7" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi mathvariant="normal">Δ</mi><mrow class="chem"><mi mathvariant="normal">O</mi><mo>/</mo><mi mathvariant="normal">C</mi></mrow></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="33pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="770fa35bca8ef870e4a32e2278a43243"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-13783-2022-ie00007.svg" width="33pt" height="14pt" src="acp-22-13783-2022-ie00007.png"/></svg:svg></span></span> value provides a simple parameter to predict whether mixtures of fresh and aged SOA form one- or two-phase particles in the atmosphere. In addition, we show that phase-separated SOA particles form when mixtures of volatile organic compounds emitted from real trees are oxidized.</p>https://acp.copernicus.org/articles/22/13783/2022/acp-22-13783-2022.pdf
spellingShingle F. Mahrt
F. Mahrt
L. Peng
L. Peng
L. Peng
J. Zaks
Y. Huang
Y. Huang
P. E. Ohno
P. E. Ohno
P. E. Ohno
N. R. Smith
F. K. A. Gregson
Y. Qin
Y. Qin
C. L. Faiola
C. L. Faiola
S. T. Martin
S. T. Martin
S. A. Nizkorodov
M. Ammann
A. K. Bertram
Not all types of secondary organic aerosol mix: two phases observed when mixing different secondary organic aerosol types
Atmospheric Chemistry and Physics
title Not all types of secondary organic aerosol mix: two phases observed when mixing different secondary organic aerosol types
title_full Not all types of secondary organic aerosol mix: two phases observed when mixing different secondary organic aerosol types
title_fullStr Not all types of secondary organic aerosol mix: two phases observed when mixing different secondary organic aerosol types
title_full_unstemmed Not all types of secondary organic aerosol mix: two phases observed when mixing different secondary organic aerosol types
title_short Not all types of secondary organic aerosol mix: two phases observed when mixing different secondary organic aerosol types
title_sort not all types of secondary organic aerosol mix two phases observed when mixing different secondary organic aerosol types
url https://acp.copernicus.org/articles/22/13783/2022/acp-22-13783-2022.pdf
work_keys_str_mv AT fmahrt notalltypesofsecondaryorganicaerosolmixtwophasesobservedwhenmixingdifferentsecondaryorganicaerosoltypes
AT fmahrt notalltypesofsecondaryorganicaerosolmixtwophasesobservedwhenmixingdifferentsecondaryorganicaerosoltypes
AT lpeng notalltypesofsecondaryorganicaerosolmixtwophasesobservedwhenmixingdifferentsecondaryorganicaerosoltypes
AT lpeng notalltypesofsecondaryorganicaerosolmixtwophasesobservedwhenmixingdifferentsecondaryorganicaerosoltypes
AT lpeng notalltypesofsecondaryorganicaerosolmixtwophasesobservedwhenmixingdifferentsecondaryorganicaerosoltypes
AT jzaks notalltypesofsecondaryorganicaerosolmixtwophasesobservedwhenmixingdifferentsecondaryorganicaerosoltypes
AT yhuang notalltypesofsecondaryorganicaerosolmixtwophasesobservedwhenmixingdifferentsecondaryorganicaerosoltypes
AT yhuang notalltypesofsecondaryorganicaerosolmixtwophasesobservedwhenmixingdifferentsecondaryorganicaerosoltypes
AT peohno notalltypesofsecondaryorganicaerosolmixtwophasesobservedwhenmixingdifferentsecondaryorganicaerosoltypes
AT peohno notalltypesofsecondaryorganicaerosolmixtwophasesobservedwhenmixingdifferentsecondaryorganicaerosoltypes
AT peohno notalltypesofsecondaryorganicaerosolmixtwophasesobservedwhenmixingdifferentsecondaryorganicaerosoltypes
AT nrsmith notalltypesofsecondaryorganicaerosolmixtwophasesobservedwhenmixingdifferentsecondaryorganicaerosoltypes
AT fkagregson notalltypesofsecondaryorganicaerosolmixtwophasesobservedwhenmixingdifferentsecondaryorganicaerosoltypes
AT yqin notalltypesofsecondaryorganicaerosolmixtwophasesobservedwhenmixingdifferentsecondaryorganicaerosoltypes
AT yqin notalltypesofsecondaryorganicaerosolmixtwophasesobservedwhenmixingdifferentsecondaryorganicaerosoltypes
AT clfaiola notalltypesofsecondaryorganicaerosolmixtwophasesobservedwhenmixingdifferentsecondaryorganicaerosoltypes
AT clfaiola notalltypesofsecondaryorganicaerosolmixtwophasesobservedwhenmixingdifferentsecondaryorganicaerosoltypes
AT stmartin notalltypesofsecondaryorganicaerosolmixtwophasesobservedwhenmixingdifferentsecondaryorganicaerosoltypes
AT stmartin notalltypesofsecondaryorganicaerosolmixtwophasesobservedwhenmixingdifferentsecondaryorganicaerosoltypes
AT sanizkorodov notalltypesofsecondaryorganicaerosolmixtwophasesobservedwhenmixingdifferentsecondaryorganicaerosoltypes
AT mammann notalltypesofsecondaryorganicaerosolmixtwophasesobservedwhenmixingdifferentsecondaryorganicaerosoltypes
AT akbertram notalltypesofsecondaryorganicaerosolmixtwophasesobservedwhenmixingdifferentsecondaryorganicaerosoltypes