Four-Dimensional Computed Tomography-Based Correlation of Respiratory Motion of Lung Tumors With Implanted Fiducials and an External Surrogate

Purpose: Our purpose was to assess the suitability of airway-implanted internal fiducial markers and an external surrogate of respiratory motion for motion management during radiation therapy of lung tumors. Methods and Materials: We analyzed 4-dimensional computed tomography scans acquired during r...

Full description

Bibliographic Details
Main Authors: Jonas Willmann, MD, Baho Sidiqi, MD, Chunyu Wang, MD, Christian Czmielewski, Henry J. Li, MD, Rosalind Dick-Godfrey, Mohit Chawla, MD, Robert P. Lee, MD, Emily Gelb, Abraham J. Wu, MD, Michael Lovelock, PhD, Zhigang Zhang, PhD, Ellen D. Yorke, PhD, Andreas Rimner, MD
Format: Article
Language:English
Published: Elsevier 2022-05-01
Series:Advances in Radiation Oncology
Online Access:http://www.sciencedirect.com/science/article/pii/S2452109421002438
Description
Summary:Purpose: Our purpose was to assess the suitability of airway-implanted internal fiducial markers and an external surrogate of respiratory motion for motion management during radiation therapy of lung tumors. Methods and Materials: We analyzed 4-dimensional computed tomography scans acquired during radiation therapy simulation for 28 patients with lung tumors who had anchored fiducial markers bronchoscopically implanted inside small airways in or near the tumor in a prospective trial. We used a linear mixed model to build population-based correlative models of tumor and surrogate motion. The first 24 of the 28 patients were used to build correlative models, and 4 of the 28 consecutive patients were excluded and used as an internal validation cohort. Of the 24 patients from the model building cohort, all were used for the models based on the internal fiducial. The external surrogate was completely visualized in 11 patients from the model building cohort, so only those were used for the models based on the external surrogate. Furthermore, we determined the predicted residual error sum of squares for our correlative models, which may serve as benchmarks for future research. Results: The motion of the internal fiducials was significantly associated with the tumor motion in the anterior-posterior (P < .0001) and superior-inferior (SI) directions (P < .0001). We also observed a strong correlation of the external surrogate anterior-posterior motion to the tumor dominant SI motion (P < .0001). In the validation cohort, the internal fiducial SI motion was the only reliable predictor of lung tumor motion. Conclusions: The internal fiducials appear to be more reliable predictors of lung tumor motion than the external surrogate. The suitability of such airway-implanted internal fiducial markers for advanced motion management techniques should be further investigated. Although the external surrogate seems to be less reliable, its wide availability and noninvasive application support its clinical utility, albeit the greater uncertainty will need to be compensated for.
ISSN:2452-1094