Germination of dimorphic seeds of Suaeda aralocaspica in response to light and salinity conditions during and after cold stratification
Cold stratification is a requirement for seed dormancy breaking in many species, and thus it is one of the important factors for the regulation of timing of germination. However, few studies have examined the influence of various environmental conditions during cold stratification on subsequent germ...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
PeerJ Inc.
2017-08-01
|
Series: | PeerJ |
Subjects: | |
Online Access: | https://peerj.com/articles/3671.pdf |
_version_ | 1827605600909918208 |
---|---|
author | Hong-Ling Wang Chang-Yan Tian Lei Wang |
author_facet | Hong-Ling Wang Chang-Yan Tian Lei Wang |
author_sort | Hong-Ling Wang |
collection | DOAJ |
description | Cold stratification is a requirement for seed dormancy breaking in many species, and thus it is one of the important factors for the regulation of timing of germination. However, few studies have examined the influence of various environmental conditions during cold stratification on subsequent germination, and no study has compared such effects on the performance of dormant versus non-dormant seeds. Seeds of halophytes in the cold desert might experience different light and salinity conditions during and after cold stratification. As such, dimorphic seeds (non-dormant brown seeds and black seeds with non-deep physiological dormancy) of Suaeda aralocaspica were cold stratified under different light (12 h light–12 h darkness photoperiod or continuous darkness) or salinity (0, 200 or 1,000 mmol L-1 NaCl) conditions for 20 or 40 days. Then stratified seeds were incubated under different light or salinity conditions at daily (12/12 h) temperature regime of 10:25 °C for 20 days. For brown seeds, cold stratification was also part of the germination period. In contrast, almost no black seeds germinated during cold stratification. The longer the cold stratification, the better the subsequent germination of black seeds, regardless of light or salinity conditions. Light did not influence germination of brown seeds. Germination of cold-stratified black seeds was inhibited by darkness, especially when they were stratified in darkness. With an increase in salinity at the stage of cold stratification or germination, germination percentages of both seed morphs decreased. Combinational pre-treatments of cold stratification and salinity did not increase salt tolerance of dimorphic seeds in germination phase. Thus, light and salinity conditions during cold stratification partly interact with these conditions during germination stage and differentially affect germination of dimorphic seeds of S. aralocaspica. |
first_indexed | 2024-03-09T06:24:01Z |
format | Article |
id | doaj.art-924d500571de47d6844b970408c7557b |
institution | Directory Open Access Journal |
issn | 2167-8359 |
language | English |
last_indexed | 2024-03-09T06:24:01Z |
publishDate | 2017-08-01 |
publisher | PeerJ Inc. |
record_format | Article |
series | PeerJ |
spelling | doaj.art-924d500571de47d6844b970408c7557b2023-12-03T11:30:14ZengPeerJ Inc.PeerJ2167-83592017-08-015e367110.7717/peerj.3671Germination of dimorphic seeds of Suaeda aralocaspica in response to light and salinity conditions during and after cold stratificationHong-Ling Wang0Chang-Yan Tian1Lei Wang2State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, ChinaState Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, ChinaState Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, ChinaCold stratification is a requirement for seed dormancy breaking in many species, and thus it is one of the important factors for the regulation of timing of germination. However, few studies have examined the influence of various environmental conditions during cold stratification on subsequent germination, and no study has compared such effects on the performance of dormant versus non-dormant seeds. Seeds of halophytes in the cold desert might experience different light and salinity conditions during and after cold stratification. As such, dimorphic seeds (non-dormant brown seeds and black seeds with non-deep physiological dormancy) of Suaeda aralocaspica were cold stratified under different light (12 h light–12 h darkness photoperiod or continuous darkness) or salinity (0, 200 or 1,000 mmol L-1 NaCl) conditions for 20 or 40 days. Then stratified seeds were incubated under different light or salinity conditions at daily (12/12 h) temperature regime of 10:25 °C for 20 days. For brown seeds, cold stratification was also part of the germination period. In contrast, almost no black seeds germinated during cold stratification. The longer the cold stratification, the better the subsequent germination of black seeds, regardless of light or salinity conditions. Light did not influence germination of brown seeds. Germination of cold-stratified black seeds was inhibited by darkness, especially when they were stratified in darkness. With an increase in salinity at the stage of cold stratification or germination, germination percentages of both seed morphs decreased. Combinational pre-treatments of cold stratification and salinity did not increase salt tolerance of dimorphic seeds in germination phase. Thus, light and salinity conditions during cold stratification partly interact with these conditions during germination stage and differentially affect germination of dimorphic seeds of S. aralocaspica.https://peerj.com/articles/3671.pdfSeed heteromorphismLightCold stratificationSeed germinationSalinity |
spellingShingle | Hong-Ling Wang Chang-Yan Tian Lei Wang Germination of dimorphic seeds of Suaeda aralocaspica in response to light and salinity conditions during and after cold stratification PeerJ Seed heteromorphism Light Cold stratification Seed germination Salinity |
title | Germination of dimorphic seeds of Suaeda aralocaspica in response to light and salinity conditions during and after cold stratification |
title_full | Germination of dimorphic seeds of Suaeda aralocaspica in response to light and salinity conditions during and after cold stratification |
title_fullStr | Germination of dimorphic seeds of Suaeda aralocaspica in response to light and salinity conditions during and after cold stratification |
title_full_unstemmed | Germination of dimorphic seeds of Suaeda aralocaspica in response to light and salinity conditions during and after cold stratification |
title_short | Germination of dimorphic seeds of Suaeda aralocaspica in response to light and salinity conditions during and after cold stratification |
title_sort | germination of dimorphic seeds of suaeda aralocaspica in response to light and salinity conditions during and after cold stratification |
topic | Seed heteromorphism Light Cold stratification Seed germination Salinity |
url | https://peerj.com/articles/3671.pdf |
work_keys_str_mv | AT honglingwang germinationofdimorphicseedsofsuaedaaralocaspicainresponsetolightandsalinityconditionsduringandaftercoldstratification AT changyantian germinationofdimorphicseedsofsuaedaaralocaspicainresponsetolightandsalinityconditionsduringandaftercoldstratification AT leiwang germinationofdimorphicseedsofsuaedaaralocaspicainresponsetolightandsalinityconditionsduringandaftercoldstratification |