Tauberian conditions under which statistical convergence follows from statistical summability $(EC)_{n}^1$

Let $(x_k)$, for $k\in \mathbb{N}\cup \{0\}$  be a sequence of real or complex numbers and set $(EC)_{n}^{1}=\frac{1}{2^n}\sum_{j=0}^{n}{\binom{n}{j}\frac{1}{j+1}\sum_{v=0}^{j}{x_v}},$ $n\in \mathbb{N}\cup \{0\}.$  We present necessary and sufficient conditions, under which $st-\lim_{}{x_k}= L$ foll...

Full description

Bibliographic Details
Main Authors: Naim L. Braha, Ismet Temaj
Format: Article
Language:English
Published: Sociedade Brasileira de Matemática 2019-10-01
Series:Boletim da Sociedade Paranaense de Matemática
Subjects:
Online Access:http://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/32297
_version_ 1818970018992357376
author Naim L. Braha
Ismet Temaj
author_facet Naim L. Braha
Ismet Temaj
author_sort Naim L. Braha
collection DOAJ
description Let $(x_k)$, for $k\in \mathbb{N}\cup \{0\}$  be a sequence of real or complex numbers and set $(EC)_{n}^{1}=\frac{1}{2^n}\sum_{j=0}^{n}{\binom{n}{j}\frac{1}{j+1}\sum_{v=0}^{j}{x_v}},$ $n\in \mathbb{N}\cup \{0\}.$  We present necessary and sufficient conditions, under which $st-\lim_{}{x_k}= L$ follows from $st-\lim_{}{(EC)_{n}^{1}} = L,$ where L is a finite number. If $(x_k)$ is a sequence of real numbers, then these are one-sided Tauberian conditions. If $(x_k)$ is a sequence of complex numbers, then these are two-sided Tauberian conditions.
first_indexed 2024-12-20T14:29:49Z
format Article
id doaj.art-925647cdf1d349df8b1aedb172027306
institution Directory Open Access Journal
issn 0037-8712
2175-1188
language English
last_indexed 2024-12-20T14:29:49Z
publishDate 2019-10-01
publisher Sociedade Brasileira de Matemática
record_format Article
series Boletim da Sociedade Paranaense de Matemática
spelling doaj.art-925647cdf1d349df8b1aedb1720273062022-12-21T19:37:39ZengSociedade Brasileira de MatemáticaBoletim da Sociedade Paranaense de Matemática0037-87122175-11882019-10-0137491710.5269/bspm.v37i4.3229718043Tauberian conditions under which statistical convergence follows from statistical summability $(EC)_{n}^1$Naim L. Braha0Ismet Temaj1College Vizioni per Arsim Department of Computer Sciences and Applied MathematicsUniversity of Prizren Faculty of EducationLet $(x_k)$, for $k\in \mathbb{N}\cup \{0\}$  be a sequence of real or complex numbers and set $(EC)_{n}^{1}=\frac{1}{2^n}\sum_{j=0}^{n}{\binom{n}{j}\frac{1}{j+1}\sum_{v=0}^{j}{x_v}},$ $n\in \mathbb{N}\cup \{0\}.$  We present necessary and sufficient conditions, under which $st-\lim_{}{x_k}= L$ follows from $st-\lim_{}{(EC)_{n}^{1}} = L,$ where L is a finite number. If $(x_k)$ is a sequence of real numbers, then these are one-sided Tauberian conditions. If $(x_k)$ is a sequence of complex numbers, then these are two-sided Tauberian conditions.http://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/32297Statistical convergence$(EC)_{n}^{1}-$ summability$(EC)_{n}^{1}-$ statistically convergentOne-sided and two-sided Tauberian conditions
spellingShingle Naim L. Braha
Ismet Temaj
Tauberian conditions under which statistical convergence follows from statistical summability $(EC)_{n}^1$
Boletim da Sociedade Paranaense de Matemática
Statistical convergence
$(EC)_{n}^{1}-$ summability
$(EC)_{n}^{1}-$ statistically convergent
One-sided and two-sided Tauberian conditions
title Tauberian conditions under which statistical convergence follows from statistical summability $(EC)_{n}^1$
title_full Tauberian conditions under which statistical convergence follows from statistical summability $(EC)_{n}^1$
title_fullStr Tauberian conditions under which statistical convergence follows from statistical summability $(EC)_{n}^1$
title_full_unstemmed Tauberian conditions under which statistical convergence follows from statistical summability $(EC)_{n}^1$
title_short Tauberian conditions under which statistical convergence follows from statistical summability $(EC)_{n}^1$
title_sort tauberian conditions under which statistical convergence follows from statistical summability ec n 1
topic Statistical convergence
$(EC)_{n}^{1}-$ summability
$(EC)_{n}^{1}-$ statistically convergent
One-sided and two-sided Tauberian conditions
url http://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/32297
work_keys_str_mv AT naimlbraha tauberianconditionsunderwhichstatisticalconvergencefollowsfromstatisticalsummabilityecn1
AT ismettemaj tauberianconditionsunderwhichstatisticalconvergencefollowsfromstatisticalsummabilityecn1