Removal of the Pesticide Pymetrozine from Aqueous Solution by Biochar Produced from Brewer's Spent Grain at Different Pyrolytic Temperatures

Biochar (BC) produced from brewer's spent grain (BSG) via slow pyrolysis at 300, 400, 500, 600, and 700 °C was characterized and investigated as an adsorbent for the removal of the pesticide pymetrozine from aqueous solution. Batch BSG BCs adsorption experiments were carried out under various c...

Full description

Bibliographic Details
Main Authors: Xinguo Xi, Jinlong Yan, Guixiang Quan, Liqiang Cui
Format: Article
Language:English
Published: North Carolina State University 2014-10-01
Series:BioResources
Subjects:
Online Access:http://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_09_4_7696_Xi_Removal_Pesticide_Biochar
Description
Summary:Biochar (BC) produced from brewer's spent grain (BSG) via slow pyrolysis at 300, 400, 500, 600, and 700 °C was characterized and investigated as an adsorbent for the removal of the pesticide pymetrozine from aqueous solution. Batch BSG BCs adsorption experiments were carried out under various conditions (such as pH, pymetrozine concentration, and BC dosage) to adsorb the pymetrozine. The BSG BCs adsorption pymetrozine capacities were increased by 21.4% to 55.5% under pyrolysis temperatures of 300, 400, 500, and 600 °C compared to 700 °C with a pyrolysis time of 2 h and by 19.0% to 52.1% at 4 h. At solution pH values of 2, 4, 6, and 8, the adsorption capacities were increased by 9.6% to 39.5% compared with that at pH 10. A similar adsorption tendency was found for the different BCs dosage. In the first 60 min, BC absorbed 70% to 80% pymetrozine. The Langmuir and Freundlich model were highly correlated with BC adsorption. The magnitude of free energy decreased by 32.2% to 47.3% with increasing temperature. The value of the enthalpy change showed the adsorption to be endothermic. The BSG BC had high efficiency in adsorbing pymetrozine and had great potential to prevent the water pollution and reuse the waste of the beer factory.
ISSN:1930-2126
1930-2126