Probing Rashba spin-orbit coupling by subcycle lightwave control of valley polarization

We perform nonperturbative calculations of light-field driven valley-polarization process in monolayer MoS_{2} which has additional Rashba spin-orbit couplings (SOCs). The ultrafast electron dynamics is simulated within the independent particle picture by solving density-matrix equations in the basi...

Full description

Bibliographic Details
Main Authors: Yu Chen, Candong Liu, Ruxin Li
Format: Article
Language:English
Published: American Physical Society 2023-02-01
Series:Physical Review Research
Online Access:http://doi.org/10.1103/PhysRevResearch.5.013098
Description
Summary:We perform nonperturbative calculations of light-field driven valley-polarization process in monolayer MoS_{2} which has additional Rashba spin-orbit couplings (SOCs). The ultrafast electron dynamics is simulated within the independent particle picture by solving density-matrix equations in the basis of linear combination of atomic orbitals, where tight-binding (TB) models including both intrinsic atomic and Rashba SOCs are used to calculate relevant matrix elements. We demonstrate that the Rashba-type SOCs can be manifested by suboptical-cycle control of valley selectivity excitations, in particular necessary via using few-cycle linearly polarized pulse with controlled carrier-envelope phase (CEP). This procedure will lead to a CEP-dependent valley Hall conductivity (VHC), which exhibits an important phase shift among different Rashba coupling strengths. The additional analysis shows that this phase shift is mainly determined by the d_{z}^{2}-orbital TB Rashba parameter from Mo atom and originates from contribution of conduction bands to VHC, where the Berry curvature modified by Rashba SOC plays a crucial role. Moreover, we also provide a qualitative interpretation on the Rashba-dependent VHC in terms of suboptical-cycle Landau-Zener-Stückelberg interference. Our results suggest a feasible approach for probing Rashba SOCs in hexagonal two-dimensional materials, and might pave the way of achieving more controls in the future valleytronics application.
ISSN:2643-1564