On the functional ∫Ωf + ∫Ω*g

In this paper, we consider a class of functionals subject to a duality restriction. The functional is of the form J(Ω,Ω*)=∫Ωf+∫Ω*g $\mathcal{J}\left({\Omega},{{\Omega}}^{{\ast}}\right)={\int }_{{\Omega}}f+{\int }_{{{\Omega}}^{{\ast}}}g$ , where f, g are given nonnegative functions in a manifold. The...

Full description

Bibliographic Details
Main Authors: Guang Qiang, Li Qi-Rui, Wang Xu-Jia
Format: Article
Language:English
Published: De Gruyter 2024-03-01
Series:Advanced Nonlinear Studies
Subjects:
Online Access:https://doi.org/10.1515/ans-2023-0105
_version_ 1797219193863536640
author Guang Qiang
Li Qi-Rui
Wang Xu-Jia
author_facet Guang Qiang
Li Qi-Rui
Wang Xu-Jia
author_sort Guang Qiang
collection DOAJ
description In this paper, we consider a class of functionals subject to a duality restriction. The functional is of the form J(Ω,Ω*)=∫Ωf+∫Ω*g $\mathcal{J}\left({\Omega},{{\Omega}}^{{\ast}}\right)={\int }_{{\Omega}}f+{\int }_{{{\Omega}}^{{\ast}}}g$ , where f, g are given nonnegative functions in a manifold. The duality is a relation α(x, y) ≤ 0 ∀ x ∈ Ω, y ∈ Ω*, for a suitable function α. This model covers several geometric and physical applications. In this paper we review two topological methods introduced in the study of the functional, and discuss possible extensions of the methods to related problems.
first_indexed 2024-04-24T12:29:46Z
format Article
id doaj.art-925d5e61766544a2b06ac9720dab2593
institution Directory Open Access Journal
issn 2169-0375
language English
last_indexed 2024-04-24T12:29:46Z
publishDate 2024-03-01
publisher De Gruyter
record_format Article
series Advanced Nonlinear Studies
spelling doaj.art-925d5e61766544a2b06ac9720dab25932024-04-08T07:35:24ZengDe GruyterAdvanced Nonlinear Studies2169-03752024-03-01241294310.1515/ans-2023-0105On the functional ∫Ωf + ∫Ω*gGuang Qiang0Li Qi-Rui1Wang Xu-Jia2Mathematical Sciences Institute, The Australian National University, Canberra, ACT2601, AustraliaSchool of Mathematical Sciences, Zhejiang University, Hangzhou310027, ChinaMathematical Sciences Institute, The Australian National University, Canberra, ACT2601, AustraliaIn this paper, we consider a class of functionals subject to a duality restriction. The functional is of the form J(Ω,Ω*)=∫Ωf+∫Ω*g $\mathcal{J}\left({\Omega},{{\Omega}}^{{\ast}}\right)={\int }_{{\Omega}}f+{\int }_{{{\Omega}}^{{\ast}}}g$ , where f, g are given nonnegative functions in a manifold. The duality is a relation α(x, y) ≤ 0 ∀ x ∈ Ω, y ∈ Ω*, for a suitable function α. This model covers several geometric and physical applications. In this paper we review two topological methods introduced in the study of the functional, and discuss possible extensions of the methods to related problems.https://doi.org/10.1515/ans-2023-0105minkowski type problemgeometric flowvariational methodprimary 35j20, 35k96secondary 53a07
spellingShingle Guang Qiang
Li Qi-Rui
Wang Xu-Jia
On the functional ∫Ωf + ∫Ω*g
Advanced Nonlinear Studies
minkowski type problem
geometric flow
variational method
primary 35j20, 35k96
secondary 53a07
title On the functional ∫Ωf + ∫Ω*g
title_full On the functional ∫Ωf + ∫Ω*g
title_fullStr On the functional ∫Ωf + ∫Ω*g
title_full_unstemmed On the functional ∫Ωf + ∫Ω*g
title_short On the functional ∫Ωf + ∫Ω*g
title_sort on the functional ∫ωf ∫ω g
topic minkowski type problem
geometric flow
variational method
primary 35j20, 35k96
secondary 53a07
url https://doi.org/10.1515/ans-2023-0105
work_keys_str_mv AT guangqiang onthefunctionalōfōg
AT liqirui onthefunctionalōfōg
AT wangxujia onthefunctionalōfōg