An Experimental Study of Drift Caused by Partial Shading Using a Modified DC-(P&O) Technique for a Stand-Alone PV System

There is tremendous potential in solar energy to meet future electricity demands. Partial shading (PS) and drift are two major problems that must be addressed simultaneously to achieve the maximum power point (MPP) of a stand-alone PV system, which are discussed in this paper. Both of these factors...

Full description

Bibliographic Details
Main Authors: Ashish Kumar Singhal, Narendra Singh Beniwal, Ruby Beniwal, Krzysztof Lalik
Format: Article
Language:English
Published: MDPI AG 2022-06-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/15/12/4251
Description
Summary:There is tremendous potential in solar energy to meet future electricity demands. Partial shading (PS) and drift are two major problems that must be addressed simultaneously to achieve the maximum power point (MPP) of a stand-alone PV system, which are discussed in this paper. Both of these factors contribute to the voltage drop due to heavy steady-state oscillation. The partial shading and drift problem are associated with severe rapid changes in the insolation. A modified drift-control perturbation and observation DC-(P&O) approach was investigated using a low-cost programmable hardware solution, i.e., the ARM Cortex M4 32-bit Microcontroller (MC) (STM32F407VGT6), with efficient embedded programming and Waijung block sets for real-time solutions. The experimental setup was accomplished on a 40-watt solar panel. It was found that the proposed method had a significant impact on drift control during abrupt changes in current and voltage caused by shading effects, with the controller conversion efficiency of 80.39% and 94.48% with percentage absolute errors of 7.3 and 7.2 for cases with and without PS and drift, respectively.
ISSN:1996-1073