Morphology, Mineralogy, and Chemistry of Ocherous Precipitate Aggregates Downstream of an Abandoned Mine Site

Mineral precipitates forming downstream of abandoned and/or uncontrolled mine sites generally act as scavengers for heavy metals, such as As and Sb, leaking from the sites. This study reports the morphology of ocherous precipitate aggregates downstream of Ayuta, an abandoned antimony mine site in To...

Full description

Bibliographic Details
Main Author: Mitsuo Manaka
Format: Article
Language:English
Published: MDPI AG 2020-12-01
Series:Minerals
Subjects:
Online Access:https://www.mdpi.com/2075-163X/11/1/32
Description
Summary:Mineral precipitates forming downstream of abandoned and/or uncontrolled mine sites generally act as scavengers for heavy metals, such as As and Sb, leaking from the sites. This study reports the morphology of ocherous precipitate aggregates downstream of Ayuta, an abandoned antimony mine site in Tochigi Prefecture, Japan, because its morphology differs significantly from those reported previously. The morphology of this aggregate consists of stacked, small terraces enclosed by numerous connected rimstone dams, although on a smaller scale compared to typical terrace landscapes. The rimstone pools contained ocherous spheroids precipitates at the bottom. Additionally, stream water and ocherous aggregates collected from the site were investigated for mineralogy and chemistry. As (0.07–0.17 μg/L) and Sb (0.02 μg/L) levels in the stream water were determined, and the distributions of As and Sb in the mineral phases of the precipitate were estimated using a sequential extraction procedure. The investigations revealed that As was adsorbed by iron-bearing ocherous precipitate aggregates, especially ferrihydrite that formed on the stream bank at concentrations, comparable to those reported by other studies (85 mg/kg). This adsorption contributed to the natural attenuation of As in the stream. Sb in the aggregate consisted of ultra-fine silt and clay-size particles of stibnite ore transported from the surrounding area and/or secondary minerals transported by groundwater and surface water.
ISSN:2075-163X