Bridging the Reality Gap in Quantum Devices with Physics-Aware Machine Learning

The discrepancies between reality and simulation impede the optimization and scalability of solid-state quantum devices. Disorder induced by the unpredictable distribution of material defects is one of the major contributions to the reality gap. We bridge this gap using physics-aware machine learnin...

Full description

Bibliographic Details
Main Authors: D. L. Craig, H. Moon, F. Fedele, D. T. Lennon, B. van Straaten, F. Vigneau, L. C. Camenzind, D. M. Zumbühl, G. A. D. Briggs, M. A. Osborne, D. Sejdinovic, N. Ares
Format: Article
Language:English
Published: American Physical Society 2024-01-01
Series:Physical Review X
Online Access:http://doi.org/10.1103/PhysRevX.14.011001
_version_ 1797366071178559488
author D. L. Craig
H. Moon
F. Fedele
D. T. Lennon
B. van Straaten
F. Vigneau
L. C. Camenzind
D. M. Zumbühl
G. A. D. Briggs
M. A. Osborne
D. Sejdinovic
N. Ares
author_facet D. L. Craig
H. Moon
F. Fedele
D. T. Lennon
B. van Straaten
F. Vigneau
L. C. Camenzind
D. M. Zumbühl
G. A. D. Briggs
M. A. Osborne
D. Sejdinovic
N. Ares
author_sort D. L. Craig
collection DOAJ
description The discrepancies between reality and simulation impede the optimization and scalability of solid-state quantum devices. Disorder induced by the unpredictable distribution of material defects is one of the major contributions to the reality gap. We bridge this gap using physics-aware machine learning, in particular, using an approach combining a physical model, deep learning, Gaussian random field, and Bayesian inference. This approach enables us to infer the disorder potential of a nanoscale electronic device from electron-transport data. This inference is validated by verifying the algorithm’s predictions about the gate-voltage values required for a laterally defined quantum-dot device in AlGaAs/GaAs to produce current features corresponding to a double-quantum-dot regime.
first_indexed 2024-03-08T16:58:59Z
format Article
id doaj.art-9270b25aae9e4a1aa4ba928c45f94906
institution Directory Open Access Journal
issn 2160-3308
language English
last_indexed 2024-03-08T16:58:59Z
publishDate 2024-01-01
publisher American Physical Society
record_format Article
series Physical Review X
spelling doaj.art-9270b25aae9e4a1aa4ba928c45f949062024-01-04T16:34:05ZengAmerican Physical SocietyPhysical Review X2160-33082024-01-0114101100110.1103/PhysRevX.14.011001Bridging the Reality Gap in Quantum Devices with Physics-Aware Machine LearningD. L. CraigH. MoonF. FedeleD. T. LennonB. van StraatenF. VigneauL. C. CamenzindD. M. ZumbühlG. A. D. BriggsM. A. OsborneD. SejdinovicN. AresThe discrepancies between reality and simulation impede the optimization and scalability of solid-state quantum devices. Disorder induced by the unpredictable distribution of material defects is one of the major contributions to the reality gap. We bridge this gap using physics-aware machine learning, in particular, using an approach combining a physical model, deep learning, Gaussian random field, and Bayesian inference. This approach enables us to infer the disorder potential of a nanoscale electronic device from electron-transport data. This inference is validated by verifying the algorithm’s predictions about the gate-voltage values required for a laterally defined quantum-dot device in AlGaAs/GaAs to produce current features corresponding to a double-quantum-dot regime.http://doi.org/10.1103/PhysRevX.14.011001
spellingShingle D. L. Craig
H. Moon
F. Fedele
D. T. Lennon
B. van Straaten
F. Vigneau
L. C. Camenzind
D. M. Zumbühl
G. A. D. Briggs
M. A. Osborne
D. Sejdinovic
N. Ares
Bridging the Reality Gap in Quantum Devices with Physics-Aware Machine Learning
Physical Review X
title Bridging the Reality Gap in Quantum Devices with Physics-Aware Machine Learning
title_full Bridging the Reality Gap in Quantum Devices with Physics-Aware Machine Learning
title_fullStr Bridging the Reality Gap in Quantum Devices with Physics-Aware Machine Learning
title_full_unstemmed Bridging the Reality Gap in Quantum Devices with Physics-Aware Machine Learning
title_short Bridging the Reality Gap in Quantum Devices with Physics-Aware Machine Learning
title_sort bridging the reality gap in quantum devices with physics aware machine learning
url http://doi.org/10.1103/PhysRevX.14.011001
work_keys_str_mv AT dlcraig bridgingtherealitygapinquantumdeviceswithphysicsawaremachinelearning
AT hmoon bridgingtherealitygapinquantumdeviceswithphysicsawaremachinelearning
AT ffedele bridgingtherealitygapinquantumdeviceswithphysicsawaremachinelearning
AT dtlennon bridgingtherealitygapinquantumdeviceswithphysicsawaremachinelearning
AT bvanstraaten bridgingtherealitygapinquantumdeviceswithphysicsawaremachinelearning
AT fvigneau bridgingtherealitygapinquantumdeviceswithphysicsawaremachinelearning
AT lccamenzind bridgingtherealitygapinquantumdeviceswithphysicsawaremachinelearning
AT dmzumbuhl bridgingtherealitygapinquantumdeviceswithphysicsawaremachinelearning
AT gadbriggs bridgingtherealitygapinquantumdeviceswithphysicsawaremachinelearning
AT maosborne bridgingtherealitygapinquantumdeviceswithphysicsawaremachinelearning
AT dsejdinovic bridgingtherealitygapinquantumdeviceswithphysicsawaremachinelearning
AT nares bridgingtherealitygapinquantumdeviceswithphysicsawaremachinelearning