FPGA-Based Implementation of Stochastic Configuration Networks for Regression Prediction

The implementation of neural network regression prediction based on digital circuits is one of the challenging problems in the field of machine learning and cognitive recognition, and it is also an effective way to relieve the pressure of the Internet in the era of intelligence. As a nonlinear netwo...

Full description

Bibliographic Details
Main Authors: Yunqi Gao, Feng Luan, Jiaqi Pan, Xu Li, Yaodong He
Format: Article
Language:English
Published: MDPI AG 2020-07-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/20/15/4191
Description
Summary:The implementation of neural network regression prediction based on digital circuits is one of the challenging problems in the field of machine learning and cognitive recognition, and it is also an effective way to relieve the pressure of the Internet in the era of intelligence. As a nonlinear network, the stochastic configuration network (SCN) is considered to be an effective method for regression prediction due to its good performance in learning and generalization. Therefore, in this paper, we adapt the SCN to regression analysis, and design and verify the field programmable gate array (FPGA) framework to implement SCN model for the first time. In addition, in order to improve the performance of the SCN model based on the FPGA, the implementation of the nonlinear activation function on the FPGA is optimized, which effectively improves the prediction accuracy while considering the utilization rate of hardware resources. Experimental results based on the simulation data set and the real data set prove that the proposed FPGA framework successfully implements the SCN regression prediction model, and the improved SCN model has higher accuracy and a more stable performance. Compared with the extreme learning machine (ELM), the prediction performance of the proposed SCN implementation model based on the FPGA for the simulation data set and the real data set is improved by 56.37% and 17.35%, respectively.
ISSN:1424-8220