Combining Copper and Zinc into a Biosensor for Anti-Chemoresistance and Achieving Osteosarcoma Therapeutic Efficacy
Due to its built-up chemoresistance after prolonged usage, the demand for replacing platinum in metal-based drugs (MBD) is rising. The first MBD approved by the FDA for cancer therapy was cisplatin in 1978. Even after nearly four and a half decades of trials, there has been no significant improvemen...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2023-03-01
|
Series: | Molecules |
Subjects: | |
Online Access: | https://www.mdpi.com/1420-3049/28/7/2920 |
_version_ | 1797607426862612480 |
---|---|
author | Yan Yik Lim Ahmad Mujahid Ahmad Zaidi Azizi Miskon |
author_facet | Yan Yik Lim Ahmad Mujahid Ahmad Zaidi Azizi Miskon |
author_sort | Yan Yik Lim |
collection | DOAJ |
description | Due to its built-up chemoresistance after prolonged usage, the demand for replacing platinum in metal-based drugs (MBD) is rising. The first MBD approved by the FDA for cancer therapy was cisplatin in 1978. Even after nearly four and a half decades of trials, there has been no significant improvement in osteosarcoma (OS) therapy. In fact, many MBD have been developed, but the chemoresistance problem raised by platinum remains unresolved. This motivates us to elucidate the possibilities of the copper and zinc (CuZn) combination to replace platinum in MBD. Thus, the anti-chemoresistance properties of CuZn and their physiological functions for OS therapy are highlighted. Herein, we summarise their chelators, main organic solvents, and ligand functions in their structures that are involved in anti-chemoresistance properties. Through this review, it is rational to discuss their ligands’ roles as biosensors in drug delivery systems. Hereafter, an in-depth understanding of their redox and photoactive function relationships is provided. The disadvantage is that the other functions of biosensors cannot be elaborated on here. As a result, this review is being developed, which is expected to intensify OS drugs with higher cure rates. Nonetheless, this advancement intends to solve the major chemoresistance obstacle towards clinical efficacy. |
first_indexed | 2024-03-11T05:30:53Z |
format | Article |
id | doaj.art-928154e00fee40ecbdb08aebc56901d2 |
institution | Directory Open Access Journal |
issn | 1420-3049 |
language | English |
last_indexed | 2024-03-11T05:30:53Z |
publishDate | 2023-03-01 |
publisher | MDPI AG |
record_format | Article |
series | Molecules |
spelling | doaj.art-928154e00fee40ecbdb08aebc56901d22023-11-17T17:10:56ZengMDPI AGMolecules1420-30492023-03-01287292010.3390/molecules28072920Combining Copper and Zinc into a Biosensor for Anti-Chemoresistance and Achieving Osteosarcoma Therapeutic EfficacyYan Yik Lim0Ahmad Mujahid Ahmad Zaidi1Azizi Miskon2Faculty of Defence Science and Technology, National Defence University of Malaysia, Sungai Besi Camp, Kuala Lumpur 57000, MalaysiaFaculty of Defence Science and Technology, National Defence University of Malaysia, Sungai Besi Camp, Kuala Lumpur 57000, MalaysiaFaculty of Engineering, National Defence University of Malaysia, Sungai Besi Camp, Kuala Lumpur 57000, MalaysiaDue to its built-up chemoresistance after prolonged usage, the demand for replacing platinum in metal-based drugs (MBD) is rising. The first MBD approved by the FDA for cancer therapy was cisplatin in 1978. Even after nearly four and a half decades of trials, there has been no significant improvement in osteosarcoma (OS) therapy. In fact, many MBD have been developed, but the chemoresistance problem raised by platinum remains unresolved. This motivates us to elucidate the possibilities of the copper and zinc (CuZn) combination to replace platinum in MBD. Thus, the anti-chemoresistance properties of CuZn and their physiological functions for OS therapy are highlighted. Herein, we summarise their chelators, main organic solvents, and ligand functions in their structures that are involved in anti-chemoresistance properties. Through this review, it is rational to discuss their ligands’ roles as biosensors in drug delivery systems. Hereafter, an in-depth understanding of their redox and photoactive function relationships is provided. The disadvantage is that the other functions of biosensors cannot be elaborated on here. As a result, this review is being developed, which is expected to intensify OS drugs with higher cure rates. Nonetheless, this advancement intends to solve the major chemoresistance obstacle towards clinical efficacy.https://www.mdpi.com/1420-3049/28/7/2920metal-based drugsCuZnanti-chemoresistanceOsteosarcoma Therapyligand biosensors |
spellingShingle | Yan Yik Lim Ahmad Mujahid Ahmad Zaidi Azizi Miskon Combining Copper and Zinc into a Biosensor for Anti-Chemoresistance and Achieving Osteosarcoma Therapeutic Efficacy Molecules metal-based drugs CuZn anti-chemoresistance Osteosarcoma Therapy ligand biosensors |
title | Combining Copper and Zinc into a Biosensor for Anti-Chemoresistance and Achieving Osteosarcoma Therapeutic Efficacy |
title_full | Combining Copper and Zinc into a Biosensor for Anti-Chemoresistance and Achieving Osteosarcoma Therapeutic Efficacy |
title_fullStr | Combining Copper and Zinc into a Biosensor for Anti-Chemoresistance and Achieving Osteosarcoma Therapeutic Efficacy |
title_full_unstemmed | Combining Copper and Zinc into a Biosensor for Anti-Chemoresistance and Achieving Osteosarcoma Therapeutic Efficacy |
title_short | Combining Copper and Zinc into a Biosensor for Anti-Chemoresistance and Achieving Osteosarcoma Therapeutic Efficacy |
title_sort | combining copper and zinc into a biosensor for anti chemoresistance and achieving osteosarcoma therapeutic efficacy |
topic | metal-based drugs CuZn anti-chemoresistance Osteosarcoma Therapy ligand biosensors |
url | https://www.mdpi.com/1420-3049/28/7/2920 |
work_keys_str_mv | AT yanyiklim combiningcopperandzincintoabiosensorforantichemoresistanceandachievingosteosarcomatherapeuticefficacy AT ahmadmujahidahmadzaidi combiningcopperandzincintoabiosensorforantichemoresistanceandachievingosteosarcomatherapeuticefficacy AT azizimiskon combiningcopperandzincintoabiosensorforantichemoresistanceandachievingosteosarcomatherapeuticefficacy |