Blow-up of solutions to cubic nonlinear Schrödinger equations with defect: The radial case
In this article we investigate both numerically and theoretically the influence of a defect on the blow-up of radial solutions to a cubic NLS equation in dimension 2.
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
De Gruyter
2017-05-01
|
Series: | Advances in Nonlinear Analysis |
Subjects: | |
Online Access: | https://doi.org/10.1515/anona-2016-0238 |
_version_ | 1818650476860669952 |
---|---|
author | Goubet Olivier Hamraoui Emna |
author_facet | Goubet Olivier Hamraoui Emna |
author_sort | Goubet Olivier |
collection | DOAJ |
description | In this article we investigate both numerically and theoretically
the influence of a defect on the blow-up of radial solutions
to a cubic NLS equation in dimension 2. |
first_indexed | 2024-12-17T01:50:50Z |
format | Article |
id | doaj.art-9296b81c1f794c2490bd9a0cca0555b2 |
institution | Directory Open Access Journal |
issn | 2191-9496 2191-950X |
language | English |
last_indexed | 2024-12-17T01:50:50Z |
publishDate | 2017-05-01 |
publisher | De Gruyter |
record_format | Article |
series | Advances in Nonlinear Analysis |
spelling | doaj.art-9296b81c1f794c2490bd9a0cca0555b22022-12-21T22:08:04ZengDe GruyterAdvances in Nonlinear Analysis2191-94962191-950X2017-05-016218319710.1515/anona-2016-0238Blow-up of solutions to cubic nonlinear Schrödinger equations with defect: The radial caseGoubet Olivier0Hamraoui Emna1Laboratoire Amiénois de Mathématique Fondamentale et Appliquée, CNRS UMR 7352, Université de Picardie Jules Verne, 80039 Amiens, FranceLaboratoire Amiénois de Mathématique Fondamentale et Appliquée, CNRS UMR 7352, Université de Picardie Jules Verne, 80039 Amiens, France; and Unité de Recherche Multifractales et Ondelettes, UR11ES53, Université de Monastir, 5000 Monastir, TunisiaIn this article we investigate both numerically and theoretically the influence of a defect on the blow-up of radial solutions to a cubic NLS equation in dimension 2.https://doi.org/10.1515/anona-2016-0238cubic nls equationblow-updefect35q55 35b44 |
spellingShingle | Goubet Olivier Hamraoui Emna Blow-up of solutions to cubic nonlinear Schrödinger equations with defect: The radial case Advances in Nonlinear Analysis cubic nls equation blow-up defect 35q55 35b44 |
title | Blow-up of solutions to cubic nonlinear Schrödinger equations with defect: The radial case |
title_full | Blow-up of solutions to cubic nonlinear Schrödinger equations with defect: The radial case |
title_fullStr | Blow-up of solutions to cubic nonlinear Schrödinger equations with defect: The radial case |
title_full_unstemmed | Blow-up of solutions to cubic nonlinear Schrödinger equations with defect: The radial case |
title_short | Blow-up of solutions to cubic nonlinear Schrödinger equations with defect: The radial case |
title_sort | blow up of solutions to cubic nonlinear schrodinger equations with defect the radial case |
topic | cubic nls equation blow-up defect 35q55 35b44 |
url | https://doi.org/10.1515/anona-2016-0238 |
work_keys_str_mv | AT goubetolivier blowupofsolutionstocubicnonlinearschrodingerequationswithdefecttheradialcase AT hamraouiemna blowupofsolutionstocubicnonlinearschrodingerequationswithdefecttheradialcase |