Blow-up of solutions to cubic nonlinear Schrödinger equations with defect: The radial case

In this article we investigate both numerically and theoretically the influence of a defect on the blow-up of radial solutions to a cubic NLS equation in dimension 2.

Bibliographic Details
Main Authors: Goubet Olivier, Hamraoui Emna
Format: Article
Language:English
Published: De Gruyter 2017-05-01
Series:Advances in Nonlinear Analysis
Subjects:
Online Access:https://doi.org/10.1515/anona-2016-0238
_version_ 1818650476860669952
author Goubet Olivier
Hamraoui Emna
author_facet Goubet Olivier
Hamraoui Emna
author_sort Goubet Olivier
collection DOAJ
description In this article we investigate both numerically and theoretically the influence of a defect on the blow-up of radial solutions to a cubic NLS equation in dimension 2.
first_indexed 2024-12-17T01:50:50Z
format Article
id doaj.art-9296b81c1f794c2490bd9a0cca0555b2
institution Directory Open Access Journal
issn 2191-9496
2191-950X
language English
last_indexed 2024-12-17T01:50:50Z
publishDate 2017-05-01
publisher De Gruyter
record_format Article
series Advances in Nonlinear Analysis
spelling doaj.art-9296b81c1f794c2490bd9a0cca0555b22022-12-21T22:08:04ZengDe GruyterAdvances in Nonlinear Analysis2191-94962191-950X2017-05-016218319710.1515/anona-2016-0238Blow-up of solutions to cubic nonlinear Schrödinger equations with defect: The radial caseGoubet Olivier0Hamraoui Emna1Laboratoire Amiénois de Mathématique Fondamentale et Appliquée, CNRS UMR 7352, Université de Picardie Jules Verne, 80039 Amiens, FranceLaboratoire Amiénois de Mathématique Fondamentale et Appliquée, CNRS UMR 7352, Université de Picardie Jules Verne, 80039 Amiens, France; and Unité de Recherche Multifractales et Ondelettes, UR11ES53, Université de Monastir, 5000 Monastir, TunisiaIn this article we investigate both numerically and theoretically the influence of a defect on the blow-up of radial solutions to a cubic NLS equation in dimension 2.https://doi.org/10.1515/anona-2016-0238cubic nls equationblow-updefect35q55 35b44
spellingShingle Goubet Olivier
Hamraoui Emna
Blow-up of solutions to cubic nonlinear Schrödinger equations with defect: The radial case
Advances in Nonlinear Analysis
cubic nls equation
blow-up
defect
35q55
35b44
title Blow-up of solutions to cubic nonlinear Schrödinger equations with defect: The radial case
title_full Blow-up of solutions to cubic nonlinear Schrödinger equations with defect: The radial case
title_fullStr Blow-up of solutions to cubic nonlinear Schrödinger equations with defect: The radial case
title_full_unstemmed Blow-up of solutions to cubic nonlinear Schrödinger equations with defect: The radial case
title_short Blow-up of solutions to cubic nonlinear Schrödinger equations with defect: The radial case
title_sort blow up of solutions to cubic nonlinear schrodinger equations with defect the radial case
topic cubic nls equation
blow-up
defect
35q55
35b44
url https://doi.org/10.1515/anona-2016-0238
work_keys_str_mv AT goubetolivier blowupofsolutionstocubicnonlinearschrodingerequationswithdefecttheradialcase
AT hamraouiemna blowupofsolutionstocubicnonlinearschrodingerequationswithdefecttheradialcase