Coenzyme Q10 Activates the Antioxidant Machinery and Inhibits the Inflammatory and Apoptotic Cascades Against Lead Acetate-Induced Renal Injury in Rats
The kidney is among the metabolic organs most susceptible to injury, particularly following exposure to xenobiotics and heavy metals. We aimed to explore the potential protective impacts of coenzyme Q10 (CoQ10) on lead acetate (PbAc)-induced nephrotoxicity in rats. Four experimental groups (n = 7) w...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2020-02-01
|
Series: | Frontiers in Physiology |
Subjects: | |
Online Access: | https://www.frontiersin.org/article/10.3389/fphys.2020.00064/full |
_version_ | 1818544905413197824 |
---|---|
author | Wafa A. AL-Megrin Doaa Soliman Rami B. Kassab Dina M. Metwally Dina M. Metwally Ahmed E. Abdel Moneim Manal F. El-Khadragy Manal F. El-Khadragy |
author_facet | Wafa A. AL-Megrin Doaa Soliman Rami B. Kassab Dina M. Metwally Dina M. Metwally Ahmed E. Abdel Moneim Manal F. El-Khadragy Manal F. El-Khadragy |
author_sort | Wafa A. AL-Megrin |
collection | DOAJ |
description | The kidney is among the metabolic organs most susceptible to injury, particularly following exposure to xenobiotics and heavy metals. We aimed to explore the potential protective impacts of coenzyme Q10 (CoQ10) on lead acetate (PbAc)-induced nephrotoxicity in rats. Four experimental groups (n = 7) were applied as follows: control group, CoQ10 alone (10 mg/kg), PbAc alone (20 mg/kg), and PbAc with CoQ10. Exposure to PbAc led to the accumulation of Pb in the kidney and increased urea and creatinine serum levels. The deposition of Pb coupled with the elevation of malondialdehyde and nitrate/nitrite levels along with the upregulation of inducible nitric oxide synthase. Additionally, upon PbAc poisoning, glutathione content and the antioxidant enzymes were depleted along with the downregulation of Nrf2 and HO-1 expression. Moreover, PbAc injection increased the protein and mRNA levels of pro-inflammatory cytokines namely, tumor necrosis factor-alpha and interleukin-1 beta, while decreased the levels of interleukin-10, an anti-inflammatory cytokine, in the kidney. Furthermore, exposure to PbAc correlated with increased levels of pro-apoptotic markers, Bax and caspase-3, and reduced levels of the anti-apoptotic marker Bcl-2. The administration of CoQ10 alleviated the molecular, biochemical and histological changes following PbAc intoxication. Thus, CoQ10 reduces the deleterious cellular side effects of PbAc exposure due to its antioxidant, anti-inflammatory and anti-apoptotic effects. |
first_indexed | 2024-12-11T22:54:33Z |
format | Article |
id | doaj.art-929a19bd73874bcba1048a075d07f7ed |
institution | Directory Open Access Journal |
issn | 1664-042X |
language | English |
last_indexed | 2024-12-11T22:54:33Z |
publishDate | 2020-02-01 |
publisher | Frontiers Media S.A. |
record_format | Article |
series | Frontiers in Physiology |
spelling | doaj.art-929a19bd73874bcba1048a075d07f7ed2022-12-22T00:47:17ZengFrontiers Media S.A.Frontiers in Physiology1664-042X2020-02-011110.3389/fphys.2020.00064511721Coenzyme Q10 Activates the Antioxidant Machinery and Inhibits the Inflammatory and Apoptotic Cascades Against Lead Acetate-Induced Renal Injury in RatsWafa A. AL-Megrin0Doaa Soliman1Rami B. Kassab2Dina M. Metwally3Dina M. Metwally4 Ahmed E. Abdel Moneim5Manal F. El-Khadragy6Manal F. El-Khadragy7Department of Biology, Faculty of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi ArabiaDepartment of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, EgyptDepartment of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, EgyptDepartment of Parasitology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, EgyptDepartment of Zoology, Faculty of Sciences, King Saud University, Riyadh, Saudi ArabiaDepartment of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, EgyptDepartment of Biology, Faculty of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi ArabiaDepartment of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, EgyptThe kidney is among the metabolic organs most susceptible to injury, particularly following exposure to xenobiotics and heavy metals. We aimed to explore the potential protective impacts of coenzyme Q10 (CoQ10) on lead acetate (PbAc)-induced nephrotoxicity in rats. Four experimental groups (n = 7) were applied as follows: control group, CoQ10 alone (10 mg/kg), PbAc alone (20 mg/kg), and PbAc with CoQ10. Exposure to PbAc led to the accumulation of Pb in the kidney and increased urea and creatinine serum levels. The deposition of Pb coupled with the elevation of malondialdehyde and nitrate/nitrite levels along with the upregulation of inducible nitric oxide synthase. Additionally, upon PbAc poisoning, glutathione content and the antioxidant enzymes were depleted along with the downregulation of Nrf2 and HO-1 expression. Moreover, PbAc injection increased the protein and mRNA levels of pro-inflammatory cytokines namely, tumor necrosis factor-alpha and interleukin-1 beta, while decreased the levels of interleukin-10, an anti-inflammatory cytokine, in the kidney. Furthermore, exposure to PbAc correlated with increased levels of pro-apoptotic markers, Bax and caspase-3, and reduced levels of the anti-apoptotic marker Bcl-2. The administration of CoQ10 alleviated the molecular, biochemical and histological changes following PbAc intoxication. Thus, CoQ10 reduces the deleterious cellular side effects of PbAc exposure due to its antioxidant, anti-inflammatory and anti-apoptotic effects.https://www.frontiersin.org/article/10.3389/fphys.2020.00064/fullcoenzyme Q10lead acetatekidneyoxidative stressinflammationapoptosis |
spellingShingle | Wafa A. AL-Megrin Doaa Soliman Rami B. Kassab Dina M. Metwally Dina M. Metwally Ahmed E. Abdel Moneim Manal F. El-Khadragy Manal F. El-Khadragy Coenzyme Q10 Activates the Antioxidant Machinery and Inhibits the Inflammatory and Apoptotic Cascades Against Lead Acetate-Induced Renal Injury in Rats Frontiers in Physiology coenzyme Q10 lead acetate kidney oxidative stress inflammation apoptosis |
title | Coenzyme Q10 Activates the Antioxidant Machinery and Inhibits the Inflammatory and Apoptotic Cascades Against Lead Acetate-Induced Renal Injury in Rats |
title_full | Coenzyme Q10 Activates the Antioxidant Machinery and Inhibits the Inflammatory and Apoptotic Cascades Against Lead Acetate-Induced Renal Injury in Rats |
title_fullStr | Coenzyme Q10 Activates the Antioxidant Machinery and Inhibits the Inflammatory and Apoptotic Cascades Against Lead Acetate-Induced Renal Injury in Rats |
title_full_unstemmed | Coenzyme Q10 Activates the Antioxidant Machinery and Inhibits the Inflammatory and Apoptotic Cascades Against Lead Acetate-Induced Renal Injury in Rats |
title_short | Coenzyme Q10 Activates the Antioxidant Machinery and Inhibits the Inflammatory and Apoptotic Cascades Against Lead Acetate-Induced Renal Injury in Rats |
title_sort | coenzyme q10 activates the antioxidant machinery and inhibits the inflammatory and apoptotic cascades against lead acetate induced renal injury in rats |
topic | coenzyme Q10 lead acetate kidney oxidative stress inflammation apoptosis |
url | https://www.frontiersin.org/article/10.3389/fphys.2020.00064/full |
work_keys_str_mv | AT wafaaalmegrin coenzymeq10activatestheantioxidantmachineryandinhibitstheinflammatoryandapoptoticcascadesagainstleadacetateinducedrenalinjuryinrats AT doaasoliman coenzymeq10activatestheantioxidantmachineryandinhibitstheinflammatoryandapoptoticcascadesagainstleadacetateinducedrenalinjuryinrats AT ramibkassab coenzymeq10activatestheantioxidantmachineryandinhibitstheinflammatoryandapoptoticcascadesagainstleadacetateinducedrenalinjuryinrats AT dinammetwally coenzymeq10activatestheantioxidantmachineryandinhibitstheinflammatoryandapoptoticcascadesagainstleadacetateinducedrenalinjuryinrats AT dinammetwally coenzymeq10activatestheantioxidantmachineryandinhibitstheinflammatoryandapoptoticcascadesagainstleadacetateinducedrenalinjuryinrats AT ahmedeabdelmoneim coenzymeq10activatestheantioxidantmachineryandinhibitstheinflammatoryandapoptoticcascadesagainstleadacetateinducedrenalinjuryinrats AT manalfelkhadragy coenzymeq10activatestheantioxidantmachineryandinhibitstheinflammatoryandapoptoticcascadesagainstleadacetateinducedrenalinjuryinrats AT manalfelkhadragy coenzymeq10activatestheantioxidantmachineryandinhibitstheinflammatoryandapoptoticcascadesagainstleadacetateinducedrenalinjuryinrats |