Diamond for Electronics: Materials, Processing and Devices

Progress in power electronic devices is currently accepted through the use of wide bandgap materials (WBG). Among them, diamond is the material with the most promising characteristics in terms of breakdown voltage, on-resistance, thermal conductance, or carrier mobility. However, it is also the one...

Full description

Bibliographic Details
Main Authors: Daniel Araujo, Mariko Suzuki, Fernando Lloret, Gonzalo Alba, Pilar Villar
Format: Article
Language:English
Published: MDPI AG 2021-11-01
Series:Materials
Subjects:
Online Access:https://www.mdpi.com/1996-1944/14/22/7081
Description
Summary:Progress in power electronic devices is currently accepted through the use of wide bandgap materials (WBG). Among them, diamond is the material with the most promising characteristics in terms of breakdown voltage, on-resistance, thermal conductance, or carrier mobility. However, it is also the one with the greatest difficulties in carrying out the device technology as a result of its very high mechanical hardness and smaller size of substrates. As a result, diamond is still not considered a reference material for power electronic devices despite its superior Baliga’s figure of merit with respect to other WBG materials. This review paper will give a brief overview of some scientific and technological aspects related to the current state of the main diamond technology aspects. It will report the recent key issues related to crystal growth, characterization techniques, and, in particular, the importance of surface states aspects, fabrication processes, and device fabrication. Finally, the advantages and disadvantages of diamond devices with respect to other WBG materials are also discussed.
ISSN:1996-1944