Mapping of Vegetation Using Multi-Temporal Downscaled Satellite Images of a Reclaimed Area in Saemangeum, Republic of Korea

The aim of this study is to adapt and evaluate the effectiveness of a multi-temporal downscaled images technique for classifying the typical vegetation types of a reclaimed area. The areas reclaimed from estuarine tidal flats show high spatial heterogeneity in soil salinity conditions. There are thr...

Full description

Bibliographic Details
Main Authors: Mu-Sup Beon, Ki Hwan Cho, Hyun Ok Kim, Hyun-Kyung Oh, Jong-Chul Jeong
Format: Article
Language:English
Published: MDPI AG 2017-03-01
Series:Remote Sensing
Subjects:
Online Access:http://www.mdpi.com/2072-4292/9/3/272
Description
Summary:The aim of this study is to adapt and evaluate the effectiveness of a multi-temporal downscaled images technique for classifying the typical vegetation types of a reclaimed area. The areas reclaimed from estuarine tidal flats show high spatial heterogeneity in soil salinity conditions. There are three typical vegetation types for which the distribution is restricted by the soil conditions. A halophyte-dominated vegetation is located in a high saline area, grass vegetation is found in a mid- or low saline area, and reed/small-reed vegetation is situated in a low saline area. Multi-temporal satellite images were used to classify the vegetation types. Landsat images were downscaled to take into account spatial heterogeneity using cokriging. A random forest classifier was used for the classification, with downscaled Landsat and RapidEye images. Classification with RapidEye images alone demonstrated a lower level of accuracy than when combined with multi-temporal downscaled images. The results demonstrate the usefulness of a downscaling technique for mapping. This approach can provide a framework which is able to maintain low costs whilst producing richer images for the monitoring of a large and heterogeneous ecosystem.
ISSN:2072-4292