Summary: | Micro-electromechanical system (MEMS) suspended inductors have excellent radio-frequency (RF) performance, but poor mechanical properties. To improve their reliability, auxiliary pillars have been used. However, few studies have been carried out on the response of a suspended inductor with auxiliary pillars under high mechanical shock. In this paper, a theoretical method is proposed that combines a single-degree-of-freedom (SDOF) model and a method for solving statically indeterminate structures. The calculated results obtained by this proposed method were verified by finite-element analysis (ANSYS). The calculated results obtained by the proposed method were found to agree well with the results of ANSYS simulation. Finally, this method was extended to a suspended inductor with double auxiliary pillars. The method proposed in this paper provides a theoretical reference for mechanical performance evaluation and reliability optimization design for MEMS suspended inductors with auxiliary pillars.
|