Effects of Asymmetric Vibration Frequency on Pulling Illusions

It is known that humans experience a haptic illusion, such as the sensation of being pulled in a particular direction, when asymmetric vibrations are presented. A pulling illusion has been used to provide a force feedback for a virtual reality (VR) system and a pedestrian navigation system, and the...

Full description

Bibliographic Details
Main Authors: Takeshi Tanabe, Hiroshi Endo, Shuichi Ino
Format: Article
Language:English
Published: MDPI AG 2020-12-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/20/24/7086
Description
Summary:It is known that humans experience a haptic illusion, such as the sensation of being pulled in a particular direction, when asymmetric vibrations are presented. A pulling illusion has been used to provide a force feedback for a virtual reality (VR) system and a pedestrian navigation system, and the asymmetric vibrations can be implemented in any small non-grounded device. However, the design methodology of asymmetric vibration stimuli to induce the pulling illusion has not been fully demonstrated. Although the frequency of the asymmetric vibration is important, findings on the frequency have not been reported. In this study, we clarified the influences of the effects on the pulling illusion based on the investigation of asymmetric vibration frequency differences. Two psychophysical experiments that related to the frequency of asymmetric vibration were performed. Experiment I showed that the illusion occurs for specific vibration waveforms at 40 Hz and 75 Hz. As a result of Experiment II, the threshold was the lowest when the frequency was 40 Hz, and highest when the frequency was 110 Hz. This result supports the previous hypothesis that the Meissner corpuscles and the Ruffini endings contribute to the illusion, while the Pacinian corpuscles do not.
ISSN:1424-8220