Low-frequency alternating magnetic field and CaCl2 influence the physicochemical, conformational and gel characteristics of low-salt myofibrillar protein

In this study, the improvement mechanism of low-frequency alternating magnetic field (LF-AMF, 5 mT, 3 h) combined with calcium chloride (CaCl2, 0–100 mM) on the gel characteristics of low-salt myofibrillar protein (MP) was investigated. LF-AMF combined with 80 mM CaCl2 treatment increased solubility...

Full description

Bibliographic Details
Main Authors: Shengming Zhao, Yu Liu, Liu Yang, Yanyan Zhao, Mingming Zhu, Hui Wang, Zhuangli Kang, Hanjun Ma
Format: Article
Language:English
Published: Elsevier 2024-06-01
Series:Food Chemistry: X
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2590157524002281
Description
Summary:In this study, the improvement mechanism of low-frequency alternating magnetic field (LF-AMF, 5 mT, 3 h) combined with calcium chloride (CaCl2, 0–100 mM) on the gel characteristics of low-salt myofibrillar protein (MP) was investigated. LF-AMF combined with 80 mM CaCl2 treatment increased solubility (32.71%), surface hydrophobicity (40.86 μg), active sulfhydryl content (22.57%), water-holding capacity (7.15%). Besides, the combined treatment decreased turbidity, particle size and intrinsic fluorescence strength of MP. Fourier transform infrared spectroscopy (FT-IR) results indicated that the combined treatment altered the secondary structure of MP by increasing β-sheet and β-turn, and reducing α-helix and random coil. The combined treatment also induced a high G' value and shortened T2 relaxation time for forming a homogeneous and compact gel structure. These results revealed that LF-AMF combined CaCl2 treatment could as a potential approach for modifying the gel characteristics of low-salt MP.
ISSN:2590-1575