Methane, ethane, and propane production in Greenland ice core samples and a first isotopic characterization of excess methane

<p>Air trapped in polar ice provides unique records of the past atmospheric composition ranging from key greenhouse gases such as methane (CH<span class="inline-formula"><sub>4</sub></span>) to short-lived trace gases like ethane (C<span class="inline-...

Full description

Bibliographic Details
Main Authors: M. Mühl, J. Schmitt, B. Seth, J. E. Lee, J. S. Edwards, E. J. Brook, T. Blunier, H. Fischer
Format: Article
Language:English
Published: Copernicus Publications 2023-05-01
Series:Climate of the Past
Online Access:https://cp.copernicus.org/articles/19/999/2023/cp-19-999-2023.pdf
_version_ 1827943052469075968
author M. Mühl
J. Schmitt
B. Seth
J. E. Lee
J. S. Edwards
E. J. Brook
T. Blunier
H. Fischer
author_facet M. Mühl
J. Schmitt
B. Seth
J. E. Lee
J. S. Edwards
E. J. Brook
T. Blunier
H. Fischer
author_sort M. Mühl
collection DOAJ
description <p>Air trapped in polar ice provides unique records of the past atmospheric composition ranging from key greenhouse gases such as methane (CH<span class="inline-formula"><sub>4</sub></span>) to short-lived trace gases like ethane (C<span class="inline-formula"><sub>2</sub></span>H<span class="inline-formula"><sub>6</sub></span>) and propane (C<span class="inline-formula"><sub>3</sub></span>H<span class="inline-formula"><sub>8</sub></span>). Recently, the comparison of CH<span class="inline-formula"><sub>4</sub></span> records obtained using different extraction methods revealed disagreements in the CH<span class="inline-formula"><sub>4</sub></span> concentration for the last glacial in Greenland ice. Elevated methane levels were detected in dust-rich ice core sections measured discretely, pointing to a process sensitive to the melt extraction technique. To shed light on the underlying mechanism, we performed targeted experiments and analyzed samples for methane and the short-chain alkanes ethane and propane covering the time interval from 12 to 42 kyr. Here, we report our findings of these elevated alkane concentrations, which scale linearly with the amount of mineral dust within the ice samples. The alkane production happens during the melt extraction step of the classic wet-extraction technique and reaches 14 to 91 ppb of CH<span class="inline-formula"><sub>4</sub></span> excess in dusty ice samples. We document for the first time a co-production of excess methane, ethane, and propane, with the observed concentrations for ethane and propane exceeding their past atmospheric background at least by a factor of 10. Independent of the produced amounts, excess alkanes were produced in a fixed molar ratio of approximately <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M9" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">14</mn><mo>:</mo><mn mathvariant="normal">2</mn><mo>:</mo><mn mathvariant="normal">1</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="42pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="21b5996f25aa1e5d07b05d6b9de8bc7e"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cp-19-999-2023-ie00001.svg" width="42pt" height="10pt" src="cp-19-999-2023-ie00001.png"/></svg:svg></span></span>, indicating a shared origin. The measured carbon isotopic signature of excess methane is (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M10" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">47.0</mn><mo>±</mo><mn mathvariant="normal">2.9</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="58pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="c6173d5bf7057daaac0302665a05af1f"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cp-19-999-2023-ie00002.svg" width="58pt" height="10pt" src="cp-19-999-2023-ie00002.png"/></svg:svg></span></span>) ‰ and its deuterium isotopic signature is (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M11" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">326</mn><mo>±</mo><mn mathvariant="normal">57</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="52pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="277b23ef94208fe1851cd38d246bdc8c"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cp-19-999-2023-ie00003.svg" width="52pt" height="10pt" src="cp-19-999-2023-ie00003.png"/></svg:svg></span></span>) ‰. With the co-production ratios of excess alkanes and the isotopic composition of excess methane we established a fingerprint that allows us to constrain potential formation processes. This fingerprint is not in line with a microbial origin. Moreover, an adsorption–desorption process of thermogenic gas on dust particles transported to Greenland does not appear very likely. Instead, the alkane pattern appears to be indicative of abiotic decomposition of organic matter as found in soils and plant leaves.</p>
first_indexed 2024-03-13T10:09:38Z
format Article
id doaj.art-92dccacfa9524de9bf6bad049c223f44
institution Directory Open Access Journal
issn 1814-9324
1814-9332
language English
last_indexed 2024-03-13T10:09:38Z
publishDate 2023-05-01
publisher Copernicus Publications
record_format Article
series Climate of the Past
spelling doaj.art-92dccacfa9524de9bf6bad049c223f442023-05-22T07:37:10ZengCopernicus PublicationsClimate of the Past1814-93241814-93322023-05-0119999102510.5194/cp-19-999-2023Methane, ethane, and propane production in Greenland ice core samples and a first isotopic characterization of excess methaneM. Mühl0J. Schmitt1B. Seth2J. E. Lee3J. S. Edwards4E. J. Brook5T. Blunier6H. Fischer7Climate and Environmental Physics and Oeschger Centre for Climate Change Research, University of Bern, 3012 Bern, SwitzerlandClimate and Environmental Physics and Oeschger Centre for Climate Change Research, University of Bern, 3012 Bern, SwitzerlandClimate and Environmental Physics and Oeschger Centre for Climate Change Research, University of Bern, 3012 Bern, SwitzerlandLos Alamos National Laboratory, Earth Systems Observation, Los Alamos, NM 87545, USACollege of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR 97331, USACollege of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR 97331, USACentre for Ice and Climate, Niels Bohr Institute, University of Copenhagen, Copenhagen, 2200, DenmarkClimate and Environmental Physics and Oeschger Centre for Climate Change Research, University of Bern, 3012 Bern, Switzerland<p>Air trapped in polar ice provides unique records of the past atmospheric composition ranging from key greenhouse gases such as methane (CH<span class="inline-formula"><sub>4</sub></span>) to short-lived trace gases like ethane (C<span class="inline-formula"><sub>2</sub></span>H<span class="inline-formula"><sub>6</sub></span>) and propane (C<span class="inline-formula"><sub>3</sub></span>H<span class="inline-formula"><sub>8</sub></span>). Recently, the comparison of CH<span class="inline-formula"><sub>4</sub></span> records obtained using different extraction methods revealed disagreements in the CH<span class="inline-formula"><sub>4</sub></span> concentration for the last glacial in Greenland ice. Elevated methane levels were detected in dust-rich ice core sections measured discretely, pointing to a process sensitive to the melt extraction technique. To shed light on the underlying mechanism, we performed targeted experiments and analyzed samples for methane and the short-chain alkanes ethane and propane covering the time interval from 12 to 42 kyr. Here, we report our findings of these elevated alkane concentrations, which scale linearly with the amount of mineral dust within the ice samples. The alkane production happens during the melt extraction step of the classic wet-extraction technique and reaches 14 to 91 ppb of CH<span class="inline-formula"><sub>4</sub></span> excess in dusty ice samples. We document for the first time a co-production of excess methane, ethane, and propane, with the observed concentrations for ethane and propane exceeding their past atmospheric background at least by a factor of 10. Independent of the produced amounts, excess alkanes were produced in a fixed molar ratio of approximately <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M9" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">14</mn><mo>:</mo><mn mathvariant="normal">2</mn><mo>:</mo><mn mathvariant="normal">1</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="42pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="21b5996f25aa1e5d07b05d6b9de8bc7e"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cp-19-999-2023-ie00001.svg" width="42pt" height="10pt" src="cp-19-999-2023-ie00001.png"/></svg:svg></span></span>, indicating a shared origin. The measured carbon isotopic signature of excess methane is (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M10" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">47.0</mn><mo>±</mo><mn mathvariant="normal">2.9</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="58pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="c6173d5bf7057daaac0302665a05af1f"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cp-19-999-2023-ie00002.svg" width="58pt" height="10pt" src="cp-19-999-2023-ie00002.png"/></svg:svg></span></span>) ‰ and its deuterium isotopic signature is (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M11" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">326</mn><mo>±</mo><mn mathvariant="normal">57</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="52pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="277b23ef94208fe1851cd38d246bdc8c"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cp-19-999-2023-ie00003.svg" width="52pt" height="10pt" src="cp-19-999-2023-ie00003.png"/></svg:svg></span></span>) ‰. With the co-production ratios of excess alkanes and the isotopic composition of excess methane we established a fingerprint that allows us to constrain potential formation processes. This fingerprint is not in line with a microbial origin. Moreover, an adsorption–desorption process of thermogenic gas on dust particles transported to Greenland does not appear very likely. Instead, the alkane pattern appears to be indicative of abiotic decomposition of organic matter as found in soils and plant leaves.</p>https://cp.copernicus.org/articles/19/999/2023/cp-19-999-2023.pdf
spellingShingle M. Mühl
J. Schmitt
B. Seth
J. E. Lee
J. S. Edwards
E. J. Brook
T. Blunier
H. Fischer
Methane, ethane, and propane production in Greenland ice core samples and a first isotopic characterization of excess methane
Climate of the Past
title Methane, ethane, and propane production in Greenland ice core samples and a first isotopic characterization of excess methane
title_full Methane, ethane, and propane production in Greenland ice core samples and a first isotopic characterization of excess methane
title_fullStr Methane, ethane, and propane production in Greenland ice core samples and a first isotopic characterization of excess methane
title_full_unstemmed Methane, ethane, and propane production in Greenland ice core samples and a first isotopic characterization of excess methane
title_short Methane, ethane, and propane production in Greenland ice core samples and a first isotopic characterization of excess methane
title_sort methane ethane and propane production in greenland ice core samples and a first isotopic characterization of excess methane
url https://cp.copernicus.org/articles/19/999/2023/cp-19-999-2023.pdf
work_keys_str_mv AT mmuhl methaneethaneandpropaneproductioningreenlandicecoresamplesandafirstisotopiccharacterizationofexcessmethane
AT jschmitt methaneethaneandpropaneproductioningreenlandicecoresamplesandafirstisotopiccharacterizationofexcessmethane
AT bseth methaneethaneandpropaneproductioningreenlandicecoresamplesandafirstisotopiccharacterizationofexcessmethane
AT jelee methaneethaneandpropaneproductioningreenlandicecoresamplesandafirstisotopiccharacterizationofexcessmethane
AT jsedwards methaneethaneandpropaneproductioningreenlandicecoresamplesandafirstisotopiccharacterizationofexcessmethane
AT ejbrook methaneethaneandpropaneproductioningreenlandicecoresamplesandafirstisotopiccharacterizationofexcessmethane
AT tblunier methaneethaneandpropaneproductioningreenlandicecoresamplesandafirstisotopiccharacterizationofexcessmethane
AT hfischer methaneethaneandpropaneproductioningreenlandicecoresamplesandafirstisotopiccharacterizationofexcessmethane