Summary: | Particle packing plays an essential role in industry and chemical engineering. In this work, the discrete element method is used to generate the cylindrical particles and densify the binary cylindrical particle mixtures under the poured packing conditions. The influences of the aspect ratio and volume fraction of particles on the packing structure are measured by planar packing fraction. The Voronoi tessellation is used to quantify the porous structure of packing. The cumulative distribution functions of local packing fractions and the probability distributions of the reduced free volume of Voronoi cells are calculated to describe the local packing characteristics of binary mixtures with different volume fractions. As a result, it is observed that particles with larger aspect ratios in the binary mixture tend to orient randomly, and the particles with smaller aspect ratios have a preferentially horizontal orientation. Results also show that the less dense packings are obtained for mixtures with particles of higher aspect ratios and mixtures with a larger fraction of elongated cylindrical particles.
|