Experimental Study of Water Displacement Rates on Remaining Oil Distribution and Oil Recovery in 2D Pore Network Model

An amount of oil remains in oil reservoirs even at the high water-cut stage of produced liquid from oil wells. To reveal the mechanism of displacement rates to affect the remaining oil in pore scales, a two-dimensional (2D) glass etching pore network model and real-time visual system were set up to...

Full description

Bibliographic Details
Main Authors: Lingwen Meng, Binshan Ju
Format: Article
Language:English
Published: MDPI AG 2022-02-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/15/4/1501
Description
Summary:An amount of oil remains in oil reservoirs even at the high water-cut stage of produced liquid from oil wells. To reveal the mechanism of displacement rates to affect the remaining oil in pore scales, a two-dimensional (2D) glass etching pore network model and real-time visual system were set up to observe the characteristics of oil distribution from water flooding and study the influence of displacement rates on oil recovery. It was found that the geometry of remaining oil in the pore network is diverse and dynamically changed at the high water-cut stage. Three geometric representative parameters were defined for the classification of five types of remaining oil (contiguous, branching, film, dropwise, bar columnar type), and controlling mechanisms for each type of remaining oil were analyzed. The experimental results show that the remaining oil saturation decreases from 21.2% to 6.5% when water injection rates increase from 0.05 to 0.5 mL/min. The increase in displacement rate improves the displacement efficiency of four types of remaining oil in the range of 55.00% to 93.67% except for dropwise type. The experimental data also indicate that the reduction in continuous residual oil and branched residual oil mainly contributes to the improvement of oil recovery of the whole network model. With the increase in displacement rate (from 0.05 to 0.1, 0.2, 0.3, 0.4, and 0.5 mL/min), the areas of five types of representative local residual oil reduce step by step. This research validates that the increase in water flooding rate in porous media leads to reduction in oil saturation, and it will improve oil recovery in oil reservoirs by enhancing water injection rates.
ISSN:1996-1073