Strong Crystallographic Influence on Spin Hall Mechanism in PLD-Grown IrO<sub>2</sub> Thin Films

Spin-to-charge conversion is a central process in the emerging field of spintronics. One of its main applications is the electrical detection of spin currents, and for this, the inverse spin Hall effect (ISHE) has become one of the preferred methods. We studied the thickness dependence of the ISHE i...

Full description

Bibliographic Details
Main Authors: Pilar Jiménez-Cavero, Irene Lucas, Jorge Ara-Arteaga, M. Ricardo Ibarra, Pedro A. Algarabel, Luis Morellón
Format: Article
Language:English
Published: MDPI AG 2021-06-01
Series:Nanomaterials
Subjects:
Online Access:https://www.mdpi.com/2079-4991/11/6/1478
Description
Summary:Spin-to-charge conversion is a central process in the emerging field of spintronics. One of its main applications is the electrical detection of spin currents, and for this, the inverse spin Hall effect (ISHE) has become one of the preferred methods. We studied the thickness dependence of the ISHE in iridium oxide (IrO<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>) thin films, producing spin currents by means of the spin Seebeck effect in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>γ</mi><mo>−</mo></mrow></semantics></math></inline-formula>Fe<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>O<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>3</mn></msub></semantics></math></inline-formula>/IrO<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula> bilayers prepared by pulsed laser deposition (PLD). The observed ISHE charge current density, which features a maximum as a consequence of the spin diffusion length scale, follows the typical behaviour of spin-Hall-related phenomena. By fitting to the theory developed by Castel et al., we find that the spin Hall angle <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>θ</mi><mi>SH</mi></msub></semantics></math></inline-formula> scales proportionally to the thin film resistivity, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>θ</mi><mi>SH</mi></msub><mo>∝</mo><msub><mi>ρ</mi><mi mathvariant="normal">c</mi></msub></mrow></semantics></math></inline-formula>, and obtains a value for the spin diffusion length <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>λ</mi><mi>IrO</mi></msub><msub><mrow></mrow><mn>2</mn></msub></mrow></semantics></math></inline-formula> of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>λ</mi><mi>IrO</mi></msub><msub><mrow></mrow><mn>2</mn></msub><mo>=</mo><mn>3.3</mn><mrow><mo>(</mo><mn>7</mn><mo>)</mo></mrow></mrow></semantics></math></inline-formula> nm. In addition, we observe a negative <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>θ</mi><mi>SH</mi></msub></semantics></math></inline-formula> for every studied thickness and temperature, unlike previously reported works, which brings the possibility of tuning the desired functionality of high-resistance spin-Hall-based devices. We attribute this behaviour to the textured growth of the sample in the context of a highly anisotropic value of the spin Hall conductivity in this material.
ISSN:2079-4991