Robust Single-Image Haze Removal Using Optimal Transmission Map and Adaptive Atmospheric Light

Haze removal is an ill-posed problem that has attracted much scientific interest due to its various practical applications. Existing methods are usually founded upon various priors; consequently, they demonstrate poor performance in circumstances in which the priors do not hold. By examining hazy an...

Full description

Bibliographic Details
Main Authors: Dat Ngo, Seungmin Lee, Bongsoon Kang
Format: Article
Language:English
Published: MDPI AG 2020-07-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/12/14/2233
Description
Summary:Haze removal is an ill-posed problem that has attracted much scientific interest due to its various practical applications. Existing methods are usually founded upon various priors; consequently, they demonstrate poor performance in circumstances in which the priors do not hold. By examining hazy and haze-free images, we determined that haze density is highly correlated with image features such as contrast energy, entropy, and sharpness. Then, we proposed an iterative algorithm to accurately estimate the extinction coefficient of the transmission medium via direct optimization of the objective function taking into account all of the features. Furthermore, to address the heterogeneity of the lightness, we devised adaptive atmospheric light to replace the homogeneous light generally used in haze removal. A comparative evaluation against other state-of-the-art approaches demonstrated the superiority of the proposed method. The source code and data sets used in this paper are made publicly available to facilitate further research.
ISSN:2072-4292