A weak solution for a ( p ( x ) , q ( x ) ) $(p(x),q(x))$ -Laplacian elliptic problem with a singular term
Abstract Here, we consider the following elliptic problem with variable components: − a ( x ) Δ p ( x ) u − b ( x ) Δ q ( x ) u + u | u | s − 2 | x | s = λ f ( x , u ) , $$ -a(x)\Delta _{p(x)}u - b(x) \Delta _{q(x)}u+ \frac{u \vert u \vert ^{s-2}}{|x|^{s}}= \lambda f(x,u), $$ with Dirichlet boundary...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2021-09-01
|
Series: | Boundary Value Problems |
Subjects: | |
Online Access: | https://doi.org/10.1186/s13661-021-01557-y |
_version_ | 1819153869983186944 |
---|---|
author | MirKeysaan Mahshid Abdolrahman Razani |
author_facet | MirKeysaan Mahshid Abdolrahman Razani |
author_sort | MirKeysaan Mahshid |
collection | DOAJ |
description | Abstract Here, we consider the following elliptic problem with variable components: − a ( x ) Δ p ( x ) u − b ( x ) Δ q ( x ) u + u | u | s − 2 | x | s = λ f ( x , u ) , $$ -a(x)\Delta _{p(x)}u - b(x) \Delta _{q(x)}u+ \frac{u \vert u \vert ^{s-2}}{|x|^{s}}= \lambda f(x,u), $$ with Dirichlet boundary condition in a bounded domain in R N $\mathbb{R}^{N}$ with a smooth boundary. By applying the variational method, we prove the existence of at least one nontrivial weak solution to the problem. |
first_indexed | 2024-12-22T15:12:03Z |
format | Article |
id | doaj.art-9300dae60d1c4bd99685f10a6016cd9c |
institution | Directory Open Access Journal |
issn | 1687-2770 |
language | English |
last_indexed | 2024-12-22T15:12:03Z |
publishDate | 2021-09-01 |
publisher | SpringerOpen |
record_format | Article |
series | Boundary Value Problems |
spelling | doaj.art-9300dae60d1c4bd99685f10a6016cd9c2022-12-21T18:21:51ZengSpringerOpenBoundary Value Problems1687-27702021-09-01202111910.1186/s13661-021-01557-yA weak solution for a ( p ( x ) , q ( x ) ) $(p(x),q(x))$ -Laplacian elliptic problem with a singular termMirKeysaan Mahshid0Abdolrahman Razani1Department of Mathematics, Islamic Azad UniversityDepartment of Pure Mathematics, Faculty of Science, Imam Khomeini International UniversityAbstract Here, we consider the following elliptic problem with variable components: − a ( x ) Δ p ( x ) u − b ( x ) Δ q ( x ) u + u | u | s − 2 | x | s = λ f ( x , u ) , $$ -a(x)\Delta _{p(x)}u - b(x) \Delta _{q(x)}u+ \frac{u \vert u \vert ^{s-2}}{|x|^{s}}= \lambda f(x,u), $$ with Dirichlet boundary condition in a bounded domain in R N $\mathbb{R}^{N}$ with a smooth boundary. By applying the variational method, we prove the existence of at least one nontrivial weak solution to the problem.https://doi.org/10.1186/s13661-021-01557-y( p ( x ) , q ( x ) ) $(p(x),q(x))$ -Laplacian problemSingular termVariational method |
spellingShingle | MirKeysaan Mahshid Abdolrahman Razani A weak solution for a ( p ( x ) , q ( x ) ) $(p(x),q(x))$ -Laplacian elliptic problem with a singular term Boundary Value Problems ( p ( x ) , q ( x ) ) $(p(x),q(x))$ -Laplacian problem Singular term Variational method |
title | A weak solution for a ( p ( x ) , q ( x ) ) $(p(x),q(x))$ -Laplacian elliptic problem with a singular term |
title_full | A weak solution for a ( p ( x ) , q ( x ) ) $(p(x),q(x))$ -Laplacian elliptic problem with a singular term |
title_fullStr | A weak solution for a ( p ( x ) , q ( x ) ) $(p(x),q(x))$ -Laplacian elliptic problem with a singular term |
title_full_unstemmed | A weak solution for a ( p ( x ) , q ( x ) ) $(p(x),q(x))$ -Laplacian elliptic problem with a singular term |
title_short | A weak solution for a ( p ( x ) , q ( x ) ) $(p(x),q(x))$ -Laplacian elliptic problem with a singular term |
title_sort | weak solution for a p x q x p x q x laplacian elliptic problem with a singular term |
topic | ( p ( x ) , q ( x ) ) $(p(x),q(x))$ -Laplacian problem Singular term Variational method |
url | https://doi.org/10.1186/s13661-021-01557-y |
work_keys_str_mv | AT mirkeysaanmahshid aweaksolutionforapxqxpxqxlaplacianellipticproblemwithasingularterm AT abdolrahmanrazani aweaksolutionforapxqxpxqxlaplacianellipticproblemwithasingularterm AT mirkeysaanmahshid weaksolutionforapxqxpxqxlaplacianellipticproblemwithasingularterm AT abdolrahmanrazani weaksolutionforapxqxpxqxlaplacianellipticproblemwithasingularterm |