Summary: | With the development of the Internet, malwares have also been expanded on the network systems rapidly. In order to deal with the diversity and amount of the variants, a number of automated behavior analysis tools have emerged as the time requires. Yet these tools produce detailed behavior reports of the malwares, it still needs to specify its category and judge its criticality manually. In this paper, we propose an automated malware classification approach based on the behavior analysis. We firstly perform dynamic analyses to obtain the detailed behavior profiles of the malwares, which are then used to abstract the main features of the malwares and serve as the inputs of the Back Propagation (BP) Neural Network model.The experimental results demonstrate that our classification technique is able to classify the malware variants effectively and detect malware accurately.
|