Painlevé Test, Phase Plane Analysis and Analytical Solutions of the Chavy–Waddy–Kolokolnikov Model for the Description of Bacterial Colonies
The Chavy–Waddy–Kolokolnikov model for the description of bacterial colonies is considered. In order to establish if the mathematical model is integrable, the Painlevé test is conducted for the nonlinear ordinary differential equation which corresponds to the fourth-order partial differential equati...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2023-07-01
|
Series: | Mathematics |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-7390/11/14/3203 |
_version_ | 1827732564543012864 |
---|---|
author | Nikolay A. Kudryashov Sofia F. Lavrova |
author_facet | Nikolay A. Kudryashov Sofia F. Lavrova |
author_sort | Nikolay A. Kudryashov |
collection | DOAJ |
description | The Chavy–Waddy–Kolokolnikov model for the description of bacterial colonies is considered. In order to establish if the mathematical model is integrable, the Painlevé test is conducted for the nonlinear ordinary differential equation which corresponds to the fourth-order partial differential equation. The restrictions on the mathematical model parameters for ordinary differential equations to pass the Painlevé test are obtained. It is determined that the method of the inverse scattering transform does not solve the Cauchy problem for the original mathematical model, since the corresponding nonlinear ordinary differential equation passes the Painlevé test only when its solution is stationary. In the case of the stationary solution, the first integral of the equation is obtained, which makes it possible to represent the general solution in the quadrature form. The stability of the stationary points of the investigated mathematical model is carried out and their classification is proposed. Periodic and solitary stationary solutions of the Chavy–Waddy–Kolokolnikov model are constructed for various parameter values. To build analytical solutions, the method of the simplest equations is also used. The solutions, obtained in the form of a truncated expansion in powers of the logistic function, are represented as a closed formula using the formula for the Newton binomial. |
first_indexed | 2024-03-11T00:51:55Z |
format | Article |
id | doaj.art-930af387cefd405aba3ae10eb6ea3a7a |
institution | Directory Open Access Journal |
issn | 2227-7390 |
language | English |
last_indexed | 2024-03-11T00:51:55Z |
publishDate | 2023-07-01 |
publisher | MDPI AG |
record_format | Article |
series | Mathematics |
spelling | doaj.art-930af387cefd405aba3ae10eb6ea3a7a2023-11-18T20:22:05ZengMDPI AGMathematics2227-73902023-07-011114320310.3390/math11143203Painlevé Test, Phase Plane Analysis and Analytical Solutions of the Chavy–Waddy–Kolokolnikov Model for the Description of Bacterial ColoniesNikolay A. Kudryashov0Sofia F. Lavrova1Moscow Engineering Physics Institute, National Research Nuclear University MEPhI, 31 Kashirskoe Shosse, 115409 Moscow, RussiaMoscow Engineering Physics Institute, National Research Nuclear University MEPhI, 31 Kashirskoe Shosse, 115409 Moscow, RussiaThe Chavy–Waddy–Kolokolnikov model for the description of bacterial colonies is considered. In order to establish if the mathematical model is integrable, the Painlevé test is conducted for the nonlinear ordinary differential equation which corresponds to the fourth-order partial differential equation. The restrictions on the mathematical model parameters for ordinary differential equations to pass the Painlevé test are obtained. It is determined that the method of the inverse scattering transform does not solve the Cauchy problem for the original mathematical model, since the corresponding nonlinear ordinary differential equation passes the Painlevé test only when its solution is stationary. In the case of the stationary solution, the first integral of the equation is obtained, which makes it possible to represent the general solution in the quadrature form. The stability of the stationary points of the investigated mathematical model is carried out and their classification is proposed. Periodic and solitary stationary solutions of the Chavy–Waddy–Kolokolnikov model are constructed for various parameter values. To build analytical solutions, the method of the simplest equations is also used. The solutions, obtained in the form of a truncated expansion in powers of the logistic function, are represented as a closed formula using the formula for the Newton binomial.https://www.mdpi.com/2227-7390/11/14/3203nonlinear differential equationPainlevé testanalytical solutionbacterial colony |
spellingShingle | Nikolay A. Kudryashov Sofia F. Lavrova Painlevé Test, Phase Plane Analysis and Analytical Solutions of the Chavy–Waddy–Kolokolnikov Model for the Description of Bacterial Colonies Mathematics nonlinear differential equation Painlevé test analytical solution bacterial colony |
title | Painlevé Test, Phase Plane Analysis and Analytical Solutions of the Chavy–Waddy–Kolokolnikov Model for the Description of Bacterial Colonies |
title_full | Painlevé Test, Phase Plane Analysis and Analytical Solutions of the Chavy–Waddy–Kolokolnikov Model for the Description of Bacterial Colonies |
title_fullStr | Painlevé Test, Phase Plane Analysis and Analytical Solutions of the Chavy–Waddy–Kolokolnikov Model for the Description of Bacterial Colonies |
title_full_unstemmed | Painlevé Test, Phase Plane Analysis and Analytical Solutions of the Chavy–Waddy–Kolokolnikov Model for the Description of Bacterial Colonies |
title_short | Painlevé Test, Phase Plane Analysis and Analytical Solutions of the Chavy–Waddy–Kolokolnikov Model for the Description of Bacterial Colonies |
title_sort | painleve test phase plane analysis and analytical solutions of the chavy waddy kolokolnikov model for the description of bacterial colonies |
topic | nonlinear differential equation Painlevé test analytical solution bacterial colony |
url | https://www.mdpi.com/2227-7390/11/14/3203 |
work_keys_str_mv | AT nikolayakudryashov painlevetestphaseplaneanalysisandanalyticalsolutionsofthechavywaddykolokolnikovmodelforthedescriptionofbacterialcolonies AT sofiaflavrova painlevetestphaseplaneanalysisandanalyticalsolutionsofthechavywaddykolokolnikovmodelforthedescriptionofbacterialcolonies |