Blowup for $ {{\rm{C}}}^{1} $ solutions of Euler equations in $ {{\rm{R}}}^{N} $ with the second inertia functional of reference

The compressible Euler equations are an elementary model in mathematical fluid mechanics. In this article, we combine the Sideris and Makino-Ukai-Kawashima's classical functional techniques to study the new second inertia functional of reference: $ { H}_{ref}{ (t) = }\frac{1}{2}\int_{\Om...

Full description

Bibliographic Details
Main Author: Manwai Yuen
Format: Article
Language:English
Published: AIMS Press 2023-01-01
Series:AIMS Mathematics
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/math.2023412?viewType=HTML
_version_ 1797905473214611456
author Manwai Yuen
author_facet Manwai Yuen
author_sort Manwai Yuen
collection DOAJ
description The compressible Euler equations are an elementary model in mathematical fluid mechanics. In this article, we combine the Sideris and Makino-Ukai-Kawashima's classical functional techniques to study the new second inertia functional of reference: $ { H}_{ref}{ (t) = }\frac{1}{2}\int_{\Omega(t)}\left( { \rho-\bar{\rho}}\right) \left\vert { \vec{x} }\right\vert ^{2}dV{{ , }} $ for the blowup phenomena of $ C^{1} $ solutions $ (\rho, \vec{u}) $ with the support of $ \left({ \rho-\bar{\rho}}, \vec{u}\right) $, and with a positive constant $ { \bar{\rho}} $ for the adiabatic index $ \gamma > 1 $. We find that if the total reference mass $ M_{ref}(0) = { \int_{{\bf R}^{N}}} (\rho_{0}({ \vec{x}})-\bar{\rho})dV\geq0, $ and the total reference energy $ E_{ref}(0) = \int_{{\bf R}^{N}}\left( \frac{1}{2}\rho_{0}({ \vec {x}})\left\vert \vec{u}_{0}({ \vec{x}})\right\vert ^{2}+\frac {K}{\gamma-1}\left( \rho_{0}^{\gamma}({ \vec{x}})-\bar{\rho }^{\gamma}\right) \right) dV, $ with a positive constant $ K $ is sufficiently large, then the corresponding solution blows up on or before any finite time $ T > 0 $.
first_indexed 2024-04-10T10:05:53Z
format Article
id doaj.art-930efa74d15b479ea87ad2c53a1f95d3
institution Directory Open Access Journal
issn 2473-6988
language English
last_indexed 2024-04-10T10:05:53Z
publishDate 2023-01-01
publisher AIMS Press
record_format Article
series AIMS Mathematics
spelling doaj.art-930efa74d15b479ea87ad2c53a1f95d32023-02-16T01:00:01ZengAIMS PressAIMS Mathematics2473-69882023-01-01848162817010.3934/math.2023412Blowup for $ {{\rm{C}}}^{1} $ solutions of Euler equations in $ {{\rm{R}}}^{N} $ with the second inertia functional of referenceManwai Yuen 0Department of Mathematics and Information Technology, The Education University of Hong Kong, Hong KongThe compressible Euler equations are an elementary model in mathematical fluid mechanics. In this article, we combine the Sideris and Makino-Ukai-Kawashima's classical functional techniques to study the new second inertia functional of reference: $ { H}_{ref}{ (t) = }\frac{1}{2}\int_{\Omega(t)}\left( { \rho-\bar{\rho}}\right) \left\vert { \vec{x} }\right\vert ^{2}dV{{ , }} $ for the blowup phenomena of $ C^{1} $ solutions $ (\rho, \vec{u}) $ with the support of $ \left({ \rho-\bar{\rho}}, \vec{u}\right) $, and with a positive constant $ { \bar{\rho}} $ for the adiabatic index $ \gamma > 1 $. We find that if the total reference mass $ M_{ref}(0) = { \int_{{\bf R}^{N}}} (\rho_{0}({ \vec{x}})-\bar{\rho})dV\geq0, $ and the total reference energy $ E_{ref}(0) = \int_{{\bf R}^{N}}\left( \frac{1}{2}\rho_{0}({ \vec {x}})\left\vert \vec{u}_{0}({ \vec{x}})\right\vert ^{2}+\frac {K}{\gamma-1}\left( \rho_{0}^{\gamma}({ \vec{x}})-\bar{\rho }^{\gamma}\right) \right) dV, $ with a positive constant $ K $ is sufficiently large, then the corresponding solution blows up on or before any finite time $ T > 0 $.https://www.aimspress.com/article/doi/10.3934/math.2023412?viewType=HTMLcompressible euler equationsinitial value problemsblowupsecond inertia functional of referenceenergy method
spellingShingle Manwai Yuen
Blowup for $ {{\rm{C}}}^{1} $ solutions of Euler equations in $ {{\rm{R}}}^{N} $ with the second inertia functional of reference
AIMS Mathematics
compressible euler equations
initial value problems
blowup
second inertia functional of reference
energy method
title Blowup for $ {{\rm{C}}}^{1} $ solutions of Euler equations in $ {{\rm{R}}}^{N} $ with the second inertia functional of reference
title_full Blowup for $ {{\rm{C}}}^{1} $ solutions of Euler equations in $ {{\rm{R}}}^{N} $ with the second inertia functional of reference
title_fullStr Blowup for $ {{\rm{C}}}^{1} $ solutions of Euler equations in $ {{\rm{R}}}^{N} $ with the second inertia functional of reference
title_full_unstemmed Blowup for $ {{\rm{C}}}^{1} $ solutions of Euler equations in $ {{\rm{R}}}^{N} $ with the second inertia functional of reference
title_short Blowup for $ {{\rm{C}}}^{1} $ solutions of Euler equations in $ {{\rm{R}}}^{N} $ with the second inertia functional of reference
title_sort blowup for rm c 1 solutions of euler equations in rm r n with the second inertia functional of reference
topic compressible euler equations
initial value problems
blowup
second inertia functional of reference
energy method
url https://www.aimspress.com/article/doi/10.3934/math.2023412?viewType=HTML
work_keys_str_mv AT manwaiyuen blowupforrmc1solutionsofeulerequationsinrmrnwiththesecondinertiafunctionalofreference