Summary: | In this study, the natural convection enhancement in grooved vertical multi-cylinders at various groove geometries is investigated. The effects of several grooves ranging from 3 to 7, groove thickness ranging from 0.25 to 1 mm, and cylinder surface temperature ranging from 350 to 500 K at different Rayleigh numbers are examined. The current study was simulated using the finite volume method using CFD with a laminar steady-state condition. The SIMPLE scheme is used for the pressure–velocity coupling discretization and the second-order upwind method is utilized to discretize the momentum and energy equations. The results obtained from the present research show that the presence of grooves on the cylinders will increase the heat transfer surface, create and intensify the secondary flow and mixing, and ultimately increase the heat transfer. Moreover, by increasing the number of grooves and its thickness, the amount of heat transfer increases dramatically. It’s also found that the groove thickness parameter's effectiveness on heat transfer is more than the groove number parameter. Ultimately, it’s demonstrated that using grooved cylinders leads to a 14 % augmentation in Nusselt number in comparison with employing plain cylinders.
|