A Numerical Approach for Dealing with Fractional Boundary Value Problems

This paper proposes a novel numerical approach for handling fractional boundary value problems. Such an approach is established on the basis of two numerical formulas; the fractional central formula for approximating the Caputo differentiator of order <inline-formula><math xmlns="http:...

Full description

Bibliographic Details
Main Authors: Abeer A. Al-Nana, Iqbal M. Batiha, Shaher Momani
Format: Article
Language:English
Published: MDPI AG 2023-09-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/11/19/4082
_version_ 1827722570289381376
author Abeer A. Al-Nana
Iqbal M. Batiha
Shaher Momani
author_facet Abeer A. Al-Nana
Iqbal M. Batiha
Shaher Momani
author_sort Abeer A. Al-Nana
collection DOAJ
description This paper proposes a novel numerical approach for handling fractional boundary value problems. Such an approach is established on the basis of two numerical formulas; the fractional central formula for approximating the Caputo differentiator of order <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula> and the fractional central formula for approximating the Caputo differentiator of order <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2</mn><mi>α</mi></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0</mn><mo><</mo><mi>α</mi><mo>≤</mo><mn>1</mn></mrow></semantics></math></inline-formula>. The first formula is recalled here, whereas the second one is derived based on the generalized Taylor theorem. The stability of the proposed approach is investigated in view of some formulated results. In addition, several numerical examples are included to illustrate the efficiency and applicability of our approach.
first_indexed 2024-03-10T21:39:59Z
format Article
id doaj.art-93308158398b40f685a100853ab109b9
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-10T21:39:59Z
publishDate 2023-09-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-93308158398b40f685a100853ab109b92023-11-19T14:43:07ZengMDPI AGMathematics2227-73902023-09-011119408210.3390/math11194082A Numerical Approach for Dealing with Fractional Boundary Value ProblemsAbeer A. Al-Nana0Iqbal M. Batiha1Shaher Momani2Department of Mathematics, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi ArabiaDepartment of Mathematics, Al Zaytoonah University of Jordan, Amman 11733, JordanNonlinear Dynamics Research Center (NDRC), Ajman University, Ajman 346, United Arab EmiratesThis paper proposes a novel numerical approach for handling fractional boundary value problems. Such an approach is established on the basis of two numerical formulas; the fractional central formula for approximating the Caputo differentiator of order <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula> and the fractional central formula for approximating the Caputo differentiator of order <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2</mn><mi>α</mi></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0</mn><mo><</mo><mi>α</mi><mo>≤</mo><mn>1</mn></mrow></semantics></math></inline-formula>. The first formula is recalled here, whereas the second one is derived based on the generalized Taylor theorem. The stability of the proposed approach is investigated in view of some formulated results. In addition, several numerical examples are included to illustrate the efficiency and applicability of our approach.https://www.mdpi.com/2227-7390/11/19/4082fractional boundary value problemfractional central formulasCaputo differentiator
spellingShingle Abeer A. Al-Nana
Iqbal M. Batiha
Shaher Momani
A Numerical Approach for Dealing with Fractional Boundary Value Problems
Mathematics
fractional boundary value problem
fractional central formulas
Caputo differentiator
title A Numerical Approach for Dealing with Fractional Boundary Value Problems
title_full A Numerical Approach for Dealing with Fractional Boundary Value Problems
title_fullStr A Numerical Approach for Dealing with Fractional Boundary Value Problems
title_full_unstemmed A Numerical Approach for Dealing with Fractional Boundary Value Problems
title_short A Numerical Approach for Dealing with Fractional Boundary Value Problems
title_sort numerical approach for dealing with fractional boundary value problems
topic fractional boundary value problem
fractional central formulas
Caputo differentiator
url https://www.mdpi.com/2227-7390/11/19/4082
work_keys_str_mv AT abeeraalnana anumericalapproachfordealingwithfractionalboundaryvalueproblems
AT iqbalmbatiha anumericalapproachfordealingwithfractionalboundaryvalueproblems
AT shahermomani anumericalapproachfordealingwithfractionalboundaryvalueproblems
AT abeeraalnana numericalapproachfordealingwithfractionalboundaryvalueproblems
AT iqbalmbatiha numericalapproachfordealingwithfractionalboundaryvalueproblems
AT shahermomani numericalapproachfordealingwithfractionalboundaryvalueproblems