Validation of Actuator Line Modeling and Large Eddy Simulations of Kite-Borne Tidal Stream Turbines against ADCP Observations

The representation of tidal energy in future renewable energy systems is growing. Most of the current tidal turbine designs are limited by the minimum current velocity required for efficient operation. The Deep Green (DG) is a kite-borne tidal power plant designed to sustain efficient operation in t...

Full description

Bibliographic Details
Main Authors: Nimal Sudhan Saravana Prabahar, Sam T. Fredriksson, Göran Broström, Björn Bergqvist
Format: Article
Language:English
Published: MDPI AG 2023-08-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/16/16/6040
Description
Summary:The representation of tidal energy in future renewable energy systems is growing. Most of the current tidal turbine designs are limited by the minimum current velocity required for efficient operation. The Deep Green (DG) is a kite-borne tidal power plant designed to sustain efficient operation in tidal current velocities as low as 1.2 ms<sup>−1</sup>. This could increase the geographical areas suitable for large-scale tidal power arrays. Numerical modeling of the Deep Green was carried out in a previous study using large eddy simulations and the actuator line method. This numerical model is compared with acoustic Doppler current profiler (ADCP) measurements taken in the wake of a DG operating in a tidal flow under similar conditions. To be comparable, and since the ADCP measures current velocities using averages of beam components, the numerical model data were resampled using a virtual ADCP in the domain. The sensitivity of the wake observations to ADCP parameters such as pulse length, bin length, and orientation of the beams is studied using this virtual ADCP. After resampling with this virtual ADCP, the numerical model showed good agreement with the observations. Overall, the LES/ALM model predicted the flow features well compared to the observations, although the turbulence levels were underpredicted for an undisturbed tidal flow and overestimated in the DG wake 70 m downstream. The velocity deficit in the DG wake was weaker in the observations compared to the LES. The ALM/LES modeling of kite-borne tidal stream turbines is suitable for further studies of array optimization and wake propagation, etc.
ISSN:1996-1073